
Global Illumination on a Mobile Phone:
Scalable Real-time Global Illumination

using Sparse Radiance Probes
Joseph Bennett

2019

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the requirements for the degree of

Master of Science in Computer Science.

Abstract

Real-time global illumination that scales from low to high-end hardware is important
for interactive applications so they can reach wider audiences. To do this, the real-time
lighting algorithm used needs to have varying performance characteristics.

Sparse Radiance Probes (SRP) is a recent real-time global illumination algorithm
that runs in under 5 ms per frame on a high-end Nvidia Titan X GPU. Its low per-frame
timings suggest it could scale to low-end devices, but no prior work provides complete
implementation details and evaluates its performance across devices with varying
performance characteristics to prove this. Therefore, this thesis aims to fill this gap
and determine if SRP is scalable across low to high-end devices. SRP is implemented
with adjustable scaling parameters, and its performance is compared across three
test devices. A low-end iPhone 7, a mid-range AMD Radeon 560 graphics card, and
a high-end AMD RX Vega 56 graphics card. The implementation in this thesis ran
above 60 FPS for simple scenes on the iPhone 7, and with a reasonable reduction in
quality, it ran just above 30 FPS on more complex scenes like Crytek Sponza. These
results show that SRP can scale to low-end devices. While the implementation in this
thesis runs in real time, there are implementation optimisations that would make SRP
run even faster across all the test devices without reducing quality.

Acknowledgements

First, I would like to thank my supervisors Taehyun Rhee and Andrew Chalmers.
The advice and guidance you have given me over the past year has been invaluable.

I also want to thank Thomas Roughton. For both the countless technical discus-
sions we have had, and for the support you have given me as a friend.

Lastly, I want to thank my parents and two brothers for supporting and encourag-
ing me over the years I have had at University.

ii

Contents

1 Introduction 1

2 Background 5

2.1 Global Illumination . 5

2.2 Physically Based Rendering Units 6

2.3 The Rendering Equation . 6

2.4 Spherical Harmonics . 7

2.5 Monte Carlo Integration . 10

2.6 Compute Shaders . 10

2.7 Principal Component Analysis and Singular Value Decomposition 11

3 Related Work 13

4 Sparse Radiance Probes: Theory 19

4.1 Sparse Interpolation . 22

4.1.1 Parallax Error Correction 24

4.1.2 Mutual Visibility . 25

4.1.3 Interpolation Operator . 26

4.2 Band-Limited Probes . 26

4.3 Precomputed Local Transport Operator 27

4.4 Irradiance Transport . 28

4.5 Clustered Principal Component Analysis 29

4.5.1 Cluster Compression . 29

4.5.2 Runtime Reconstruction . 30

iii

CONTENTS

5 Sparse Radiance Probes: Implementation 31
5.1 Runtime Overview . 32
5.2 Radiance Coefficient Generation 34

5.2.1 Sample Generation . 36
5.3 Cluster SVD Projection and Irradiance Transport 38
5.4 Forward Render Pass . 38
5.5 Lightmap Dilation . 39
5.6 Transport Coefficient Precomputation 40

5.6.1 Overview . 41
5.6.2 Primary Ray Generation . 42
5.6.3 Primary Ray Intersection and Mutual Visibility Check . . 43
5.6.4 Mutual Visibility Ray Generation 44
5.6.5 Accumulation . 46
5.6.6 Clustered Principal Component Analysis 48

6 Results 49
6.1 Test Scenes . 52
6.2 Visual Quality Evaluation . 52
6.3 Performance Evaluation . 58
6.4 Error vs Spherical Harmonic Order 60
6.5 Scalability . 62

6.5.1 Spherical Harmonic Order 62
6.5.2 Probe Count . 62
6.5.3 Receiver Count . 62

6.6 Reducing Receiver Counts to Improve Performance 64
6.7 Analysis . 68

7 Conclusion 71

Appendices 75

A LlamaEngine 76

iv

Chapter 1

Introduction

Imagine you are working on a video game. Your desktop computer with a high-end
graphics card simulates the world beautifully, the lighting feels realistic, and the
game runs at a smooth 60 frames per second. You have a problem though: the
game needs to run on more devices than just your computer. Unfortunately, the
global illumination (GI) algorithm that provides the realistic lighting does not scale
to the limited memory and processing power of mobile devices.

A scalable GI algorithm needs to run well on low-end devices while not being so
limited that it cannot take advantage of the extra computation and storage available
on high-end devices. Scalability is especially important as more and more devices
with rendering capabilities are becoming available, from low-end mobile devices
up to high-end desktop computers with the latest graphics cards. Applications
for scalable real-time GI are not limited to video games: for example, architects
may need to show a realistic visualisation of a design to a client on a mobile device
while on-site, and yet still have a higher quality version available on a desktop
computer in their office.

There are many real-time GI methods in production use, each offering different
levels of performance-quality tradeoffs. Screen-space based methods [1, 2] perform
well on low-end devices but their inherent lack of off-screen information means the
result is equally inaccurate on high-end devices. Voxel cone tracing [3] produces
high-quality results, but it is too expensive to run on current low-end devices [4].
Precomputed lightmaps [5] scale well across all hardware but force geometry and
lighting to remain static at runtime.

Recently, Silvennoinen and Lehtinen introduced Sparse Radiance Probes (SRP) [6],
a real-time GI method which supports dynamic lighting, cameras, and diffuse

1

materials. It efficiently reconstructs indirect illumination at a dense set of receiver
points distributed over scene surfaces by using a sparse set of radiance probes and
precomputed transport coefficients. In computer graphics, a method is generally
accepted as real-time if it runs in under 33.3 ms; on a high-end Nvidia Titan X
graphics card, their method runs in under 5 ms per frame. As SRP runs well under
the real-time cut-off on this high-end graphics card, it suggests that low-end de-
vices could also run SRP in real time. Additionally, the sparse nature of SRP means
low-end devices with limited memory can still store SRP’s precomputed transport
coefficients, and the precomputed data can be packaged into reasonably small
downloads over mobile networks. Silvennoinen and Lehtinen reported that SRP
used less than 100 MB of memory for a scene used in an unannounced ”triple-A”
video game.

Although these metrics suggest SRP could scale to lower-end devices, there is
no previous work that implements and evaluates SRP on low-end devices such
as mobile phones. Additionally, the authors of SRP did not provide complete
implementation details for precomputing the transport coefficients. The aim of
thesis is therefore to determine if SRP is a scalable real-time GI method for various
platforms, including an iPhone 7: that is, to determine if it runs in real time on
low-end devices while also scaling up to provide higher quality results on high-
end hardware. I implemented my own version of SRP with adjustable scaling
parameters, and analysed its performance, quality, and scalability across low, mid,
and high-end hardware.

The main contributions of this thesis can be summarised as:

• An implementation of SRP which runs across three devices with varying
performance characteristics: a high-end AMD RX Vega 56 graphics card, a
mid-range AMD Radeon 560 graphics card, and a low-end iPhone 7.

• A pipeline and complete implementation details for precomputing SRP’s
transport coefficients on the graphics processing unit (GPU).

• A performance and visual quality evaluation of my SRP implementation
across low, mid, and high-end hardware to determine its scalability.

The thesis is structured as follows. Chapter 2 provides background on topics
necessary to understand the chapters which follow. Chapter 3 describes the related
work in real-time scalable GI algorithms. Chapter 4 covers the theory of the SRP;

2

CHAPTER 1. INTRODUCTION

it describes how SRP encodes radiance at a sparse set of probes while correcting
for parallax error and visibility, how SRP reconstructs irradiance at receiver points
using the probes and transport coefficients, and lastly how SRP compresses its trans-
port coefficients using clustered principal component analysis (CPCA). Chapter 5
describes my implementation of SRP; it covers the steps of my implementation and
how data flows between them, how radiance at the probes is efficiently projected
into spherical harmonics at runtime using compute shaders, and how the pipeline
for precomputing the transport coefficients on the GPU works. Chapter 6 provides
the results of my performance and visual quality evaluation across low, mid, and
high-end hardware to determine the scalability of SRP. Lastly, Chapter 7 outlines
the conclusions of this thesis, discusses its limitations, and provides suggestions
for future work.

3

4

Chapter 2

Background

Figure 2.1: Direct vs Global Illumination. ”Cornell Box With and Without Radiosity

Enabled” by Paul Johnston is licensed under CC BY-SA 3.0 [7].

2.1 Global Illumination

Global illumination (GI), roughly speaking is the effect that other lit objects
have on the illumination of a surface. A basic real-time rasteriser only considers
local illumination. Local illumination assumes that the illumination of a point

5

2.2. PHYSICALLY BASED RENDERING UNITS

on a surface depends only on light sources in a scene; this means a rasteriser
can compute illumination for each pixel independently of every other pixel.
However, in the real world, the illumination of a point also depends how light
interacts with other surfaces. This interdependency between surfaces makes
global illumination expensive to simulate.

Shadows, reflection, and refraction are all examples of GI. These effects
significantly increase the realism of a rendered images (Figure 2.1).

2.2 Physically Based Rendering Units

Physically based rendering (PBR) is a methodology that aims to simulate light as
close as possible to how it behaves in the real world. One component of PBR is
the use of physically based units from radiometry to measure light:

• Radiant Flux, Φ, is the flow of radiant energy over time. It is measured in
watts (W).

• Radiance is the radiant flux per square metre per steradian.

• Irradiance is the density of radiant flux over an area - dΦ
dA

.

Radiance and irradiance are the units most commonly used in computer
graphics. At a high level, radiance is a measure of an amount of light in a
direction ω, and irradiance is the amount of light a point x receives from all
directions.

2.3 The Rendering Equation

The aim of any global illumination method is to solve or approximate the ren-
dering equation [8]. This equation describes the distribution of light, or more
specifically, radiance in a scene:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

f(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi (2.1)

6

CHAPTER 2. BACKGROUND

It states that the outgoing radiance from a point x in the direction ωo is the sum
of the radiance x emits in direction ωo, plus the radiance x reflects in direction
ωo. The integral describes the amount of light x reflects. It gathers incoming
radiance from all directions over the hemisphere Ω centred at the surface normal
n and modulates it using the bi-directional reflectance distribution (BRDF) and
Lambert’s cosine law. The BRDF controls the amount of radiance from an
incoming direction ωi that x reflects in the outgoing direction ωo.

The interdependence between surfaces can be seen through the recursion in
this equation. The incoming radiance at a point x depends on the radiance it
receives from all points it can see, and the incoming radiance at those points
again depends on the incoming radiance from all the points they can see, ad
infinitum.

2.4 Spherical Harmonics

Spherical harmonics are an infinite set of orthonormal basis functions defined
over the unit sphere. Many computer graphics techniques use spherical basis
functions to efficiently encode radiance or irradiance using a linear combination
of coefficients and basis functions:

f(ω) =
∞∑
j=0

cjBj(ω) (2.2)

Each coefficient cj conveys how similar a particular basis function Bj is to the
original function f(ω). Finding these coefficients can be done by projection, and
recreating the original function is called reconstruction (Equation 2.2). To project
a function f(ω) onto an orthonormal basis1, the inner product is taken with each
basis function, yielding a coefficient cj which represents how similar the basis
function is to the original function:

cj =

∫
f(ω)Bj(ω)dω (2.3)

1While not applicable in this thesis, it is useful to know that non-orthonormal basis functions
must take the extra step of multiplying by the inverse Gramm-matrix here. See Iwanaki and
Sloan for more details [9].

7

2.4. SPHERICAL HARMONICS

Limiting the number of basis functions to n gives a band-limited approxima-
tion of the original function:

f(ω) ≈
n∑
j=0

cjBj(ω) (2.4)

This approximation is useful for real-time global illumination methods as it
provides a way to efficiently store and evaluate radiance and irradiance distribu-
tions. In fact, spherical harmonics can represent Lambertian diffuse irradiance
using nine coefficients with only 1% error [10]. However, a band-limited approxi-
mation only captures low-frequency information. Spherical harmonics represent
low-frequency diffuse irradiance well, but information is lost when encoding
radiance or irradiance with higher-frequency information like visibility. Unfor-
tunately, low-frequency representations are a necessary trade-off for real-time
methods, as alternatives generally require expensive sampling of the rendering
equation.

In computer graphics, we only use the real part of spherical harmonics. These
are defined as follows:

Y m
l (θ, φ) =

√

2Km
l cos(mφ)Pm

l (cos θ) m > 0
√

2Km
l sin(−mφ)P−ml (cos θ) m < 0

K0
l P

0
l (cos θ) m = 0

(2.5)

where P is the associated Legendre polynomial function, and K is a nor-
malisation factor. Spherical Harmonic Lighting: The Gritty Details [11] includes
definitions of the Legendre polynomials and the normalisation factor.

Spherical harmonic functions are parameterised by l andm. These parameters
group the functions into orders, where l is the order of a function and m is the
index of a function within that order. Orders can also be referred to as bands.
While orders are indexed from zero, bands start at one (i.e. order-0 is the first
band, order-1 is the second etc.). For given order l, the index m lies within
the range [−l, l] and it follows that each order has 2l + 1 basis functions. As an
example, an order-2 spherical harmonic (3rd row of Figure 2.2) has nine functions
in total: the five functions from its band and the four from the bands before it.

8

CHAPTER 2. BACKGROUND

The total number of functions for an order (including all lower bands) is (l + 1)2.
For cleaner notation in this thesis, I refer to the direction using a single vector ω
instead of a spherical coordinates (θ, φ), and I index each basis function with a
single index j instead of l and m (i.e. Yj(ω) instead of Y m

l (θ, φ)).

Spherical harmonics are not the only spherical basis functions in use in
rendering; non-linear wavelets [12], spherical radial basis functions (SRBFs) [13],
and Ambient Dice [9] are some examples.

To calculate each coefficient cj , I solve Equation 2.3 using Monte Carlo in-
tegration within a compute shader. The next section introduces Monte Carlo
integration, followed by a section on compute shaders.

Figure 2.2: Visualisation of the first four spherical harmonic orders. Order-0
spherical harmonics are shown in the first row, order-1 in the second row and
so forth. The higher the order, the higher the frequency of the functions. Blue
shows where the function is positive, and yellow where it is negative. The above

image ”Spherical Harmonics” by Iñigo Quilez is licensed under CC BY-SA 3.0 [14].

9

2.5. MONTE CARLO INTEGRATION

2.5 Monte Carlo Integration

Monte Carlo integration is a numerical integration technique which uses random
samples to estimate the value of an integral. It is especially useful for solving
complex multi-dimensional integrals like the rendering equation because its
convergence rate does not depend on the dimension of the integrand.

The basic Monte Carlo integration algorithm is simple: it takes N samples of
a function and then divides the sum by the total number of sample N . For this
to work, the samples must be uniformly distributed over the integral’s domain.
Given enough samples, the algorithm will converge to the true value of the
integral.

For more information on Monte Carlo integration, Physically Based Render-
ing (PBRT) [15] provides a good introduction to the subject and why it works in
the context of computer graphics.

2.6 Compute Shaders

Compute shaders are general purpose shaders which allow non-graphics specific
functions to run on a graphics processing unit (GPU); they are a generalisation
of vertex and fragment shaders. Each shader function is run in parallel over
different data; in vertex and fragment shaders, this data is usually a single vertex
or a pixel, but for a compute shader it can be anything.

Different shading languages use different terminology to describe how com-
pute shaders operate. This thesis uses the terminology from the Metal Shading
Language [16]. To transform data using a compute shader, it must be broken into
chunks. Metal calls these chunks threadgroups. Within a threadgroup are individ-
ual threads which each run a kernel function. The threads within a threadgroup
can run in parallel and can access shared threadgroup memory.

10

CHAPTER 2. BACKGROUND

2.7 Principal Component Analysis and Singular Value

Decomposition

Principal Component Analysis (PCA) is a technique used to find the axes in a
data set with the most variation. These axes are called principal components.

Singular Value Decomposition (SVD) is one way to perform PCA. SVD de-
composes matrices into the form:

M = UΣV T (2.6)

where U is a m×m matrix, Σ is a m×n rectangular diagonal matrix, and V is
an n×n matrix. SRP uses the SVD to implement Clustered Principal Component
Analysis (CPCA) [17] for compressing its precomputed transport coefficients.

11

2.7. PRINCIPAL COMPONENT ANALYSIS AND SINGULAR VALUE
DECOMPOSITION

12

Chapter 3

Related Work

There is a great deal of research available on real-time global illumination. In
this section, I cover the related work most relevant to scalable real-time global
illumination. For more detailed background, Ritchell et al. provide an in-depth
coverage of the state-of-the-art in interactive global illumination [18].

Monte Carlo path tracing [8] sets the bar in terms of the quality achievable by
rendering algorithms. It is the industry standard for rendering VFX, animated
films, commercials, and more [19]. Weta Digital’s Manuka [20], Pixar’s Ren-
derMan [21], and Disney’s Hyperion [22] are renderers from the top VFX and
animation studios which are all based on path-tracing. However, path-tracing,
and other ray tracing based methods [23, 24] are typically very expensive making
them unsuitable for real-time applications.

While ray tracing can be expensive, recent advances in both GPU hardware
and algorithms are making real-time ray tracing feasible [25]. For example, Weta
Digital now uses real-time ray tracing as a pre-visualisation tool [26], and some
video games such as Battlefield 5 use real-time ray tracing to render reflections
and other global illumination effects [27].

The current problem with these advances is that they are only performant on
recent high-end graphics cards specifically designed to improve the performance
of ray tracing. Low-end devices like mobile phones present a more challenging
environment for ray tracing: their small form factor means there is little room for
cooling, and energy usage must be kept to a minimum to preserve battery life.

13

One way mobile GPUs reduce energy usage is through dynamic voltage
and frequency scaling (DVFS). DVFS adjusts the voltage supplied to the GPU
based on previous GPU usage. This typically saves energy at the cost of minor
decreases in performance but unfortunately does not work well with global
illumination algorithms [28]. There is research looking to improve this; Lee et al.
proposed a novel GPU architecture in 2013 to improve ray tracing performance
on mobile devices [29]. However, at publication, their work was in the simulation
stage and they had not developed any hardware. Real-time ray tracing may
be a viable solution in the future for scalable real-time global illumination, but
hardware acceleration is not yet available on a wide enough range of devices.

One way to overcome the cost of ray tracing at runtime is Lightmapping [5].
Lightmapping stores precomputed illumination samples in a two-dimensional
texture called a lightmap. In a manner similar to texture mapping, UV coordi-
nates are assigned to surfaces in a scene which map to locations in a lightmap.
Path tracing is commonly used to precompute the illumination samples. For
diffuse Lambertian surfaces, a lightmap stores precomputed irradiance sam-
ples. At runtime, a forward or deferred pass queries the lightmap at the UV
coordinates for the current surface the pass is shading. For normal-mapped or
rough specular surfaces, it is infeasible to store samples for every view direction.
Instead, a lightmap can store radiance samples encoded using a spherical basis
such as spherical harmonics [30, 31].

Lightmapping has been proven to be scalable by many video games; for
example, the puzzle game The Witness uses lightmapping and is available on
mobile devices, consoles, and desktop computers [32, 33]. The primary limitation
of lightmapping is that geometry and lighting must remain static at runtime.
This is not an issue for applications like The Witness where there are no dynamic
lights or geometry, but other techniques must be considered for applications for
which these limitations are too restrictive.

Screen space global illumination techniques use the final rendered image and
other auxiliary textures from the rasterisation process like the depth buffer to
approximate global illumination effects. Examples include Screen Space Ambient
Occlusion (SSAO) [1], which approximates the self-shadowing around edges of
geometry; and Screen Space Directional Occlusion (SSDO) [2] which extends SSAO

14

CHAPTER 3. RELATED WORK

by adding directional shadows and one diffuse indirect bounce of light. Screen
space techniques are highly performant, support both dynamic lighting and
geometry, and need no precomputation. However, they lack accuracy as indirect
light from offscreen sources cannot contribute.

Many Light Methods use many virtual point lights (VPLs) to approximate
global illumination. Instant Radiosity[34] first introduced this idea. Paths of light
are traced through a scene, and a VPL is placed at the intersections the paths
make with geometry. Many light methods are biased (meaning their result is
not exactly correct), but they produce images without noise and are scalable as
their performance/quality can be tuned from plausible renders in real time to
high-quality offline renders; Lightcuts [35] made many light methods scalable
so they could produce high-quality offline renders, and Bidirectional Lightcuts
[36] helped reduce the inherent bias. However, these extensions mainly improve
offline applications.

Imperfect shadow maps by Ritchell et al. [37] is a many-light method which in-
teractively renders GI with dynamic lighting and geometry. They later improved
on their original imperfect shadow map implementation by adding support for
more complex scenes [38]. While close, imperfect shadow maps does not run
above 30 FPS on the dedicated graphics cards it was tested on, indicating that it
may not be suitable for low-end devices. For more information on many light
methods, Dachsbacher et al. provide a in-depth survey [39].

Voxel Cone Tracing (VCT) by Crassin [3] is a real-time global illumination tech-
nique which supports indirect diffuse and specular lighting, as well as dynamic
lighting and geometry. At a high-level, VCT is similar to path tracing but with
two approximations to improve performance. First, it approximates geometry
by voxelising the scene, and second, it traces cones through the voxelised scene
instead of firing many individual rays. Cascaded voxel cone tracing [40] offers
improved performance by using dynamic resolution voxel grids. Similar to
mip-maps, they use a high resolution grid near the camera, which progressively
decreases in resolution as the distance from the camera increases.

VCT runs in real time on mainstream graphics cards but it is still too expensive
for lower-end devices. Nvidia reported their implementation to run in 7.4 ms on
the GTX770, and 28.1 ms on a then-mid-range GTX650 at resolution 1920x1080

15

and ”medium” quality. Both of these graphics cards are considerably more
performant than modern mobile graphics hardware. Wahleén’s master’s thesis
found that VCT was too expensive to run in real time on a Samsung S7 Edge
mobile phone [4], and Gaijin Entertainment also stated at GDC 2019 that voxel
cone tracing was too expensive for their purposes on an Xbox One [41]; however,
their GI budget is only a few milliseconds due to other GPU computation costs
needed for their game. Instead of using VCT, they use their own method which
also makes use of a voxelised scene. It runs in 0.7 ms for single bounce, and
1.6 ms for n-bounces on an Xbox One.

McGuire et al. introduce a new data structure and an algorithm called light
field probes [42]. It supports real-time global illumination for static scenes with
both static and dynamic objects.

Enlighten is a commercialised and proprietary solution for rendering global-
illumination in real time [43, 44]. It runs on low-end mobile devices to high-end
desktop GPUs. Unfortunately, there is limited information available on the
details of their solution; however, at a high level, it uses lightmapping and light
probes for diffuse indirect lighting. Their solution aims to minimise GPU time so
that the GPU is free to perform other tasks, and as such they update their probes
asynchronously on the central processing unit (CPU).

Precomputed radiance transfer is a method introduced by Sloan et al. for ren-
dering indirect environment lighting in real time [45]. PRT splits the rendering
equation into two parts: a lighting function and a transfer function. The lighting
function describes incoming radiance, and the transfer function describes how
that incoming radiance interacts with surfaces in a scene. This separation means
PRT can reduce computation considerably by precomputing the transfer function.
While this means geometry must remain static, it reduces runtime computation
enough to make dynamic real-time indirect lighting possible. In addition to
splitting the rendering equation, precomputed radiance transfer methods also
band-limit the indirect environment lighting by projecting it into a spherical
basis. Sloan et al. use spherical harmonics [46], but other bases like non-linear
wavelets have also been used [12].

Early PRT methods were limited to environment lighting. Hasan et al. extend
PRT adding support for local lights (e.g. point and spot lights) [47]. It is a direct-

16

CHAPTER 3. RELATED WORK

to-indirect method which computes indirect illumination by gathering from a
large set of radiance/irradiance samples distributed in a scene called radiance
probes.

Sparse Radiance Probes (SRP) is a real-time global illumination method based
on PRT and other direct-to-indirect methods which supports dynamic lighting,
cameras, and diffuse materials [6]. Additionally, it can support glossy materials
for the final bounce towards the camera. Silvennoinen and Lehtinen, the authors
of SRP, reported it ran in 2.5 ms on an a Nvidia Titan X for the test scene Sponza,
and 4.87 ms for Brutalist Hall, a novel scene from a ”triple-A” video game. While
these scenes were rendered on a high-end graphics card, the low render times
suggest it could also scale to low-end devices. The next chapter of this thesis
describes the theory of SRP in detail, followed by a chapter describing my SRP
implementation.

17

18

Chapter 4

Sparse Radiance Probes: Theory

The Sparse Radiance Probes (SRP) technique aims to compute indirect illumi-
nation at a dense set of points called receivers. These receivers can be any set of
points distributed over scene surfaces or within space. Computing the indirect il-
lumination (or, more specifically, the outgoing indirect radiance) requires densely
sampling the rendering equation [8] over directions ωo for all receivers x:

Lo(x, ωo) =

∫
Ω

f(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi (4.1)

Unfortunately, it is too expensive for current hardware to do this in real
time. SRP first simplifies the problem by assuming all surfaces use the view-
independent diffuse Lambertian BRDF1:

Lo(x) =
ρ

π

∫
Ω

Li(x, ωi)(ωi · n)dωi (4.2)

Removing a dimension from the problem helps make it more tractable, but the
incoming radiance at each receiver Li(x, ωi) remains too expensive to sample in
real time. Instead, SRP approximates Li(x, ωi) by interpolating between radiance
observed at a much sparser set of points called radiance probes. Section 4.1 covers
how SRP performs this interpolation while accounting for parallax error and
visibility.

1As an extension, SRP also approximates glossy view-dependent BRDFs, limited to the final
bounce towards the camera. This approximation technique is not implemented in this thesis.

19

The interpolation also helps, but SRP still needs to compute the incoming
radiance at each probe. On top of this, it must do this every frame to support
dynamic lighting in real time. The problem is that even with only a few probes,
it is still too costly to compute incoming radiance at each probe by sampling the
rendering equation. To overcome this, SRP band-limits each probe’s radiance by
encoding it in a spherical basis (section 4.2). This encoding means SRP can effi-
ciently store and evaluate radiance in real time using a small number of radiance
coefficients. Dynamic lighting is possible as we can efficiently generate these
coefficients in real time using a compute shader (section 5.2). The trade-off of
this representation is that the encoding only captures low-frequency information,
which can reduce the accuracy of indirect shadows and cause colour bleeding.
Silvennoinen and Lehtinen [6], the authors of SRP, use spherical harmonics as
the set of spherical basis functions.

While the interpolation and band-limited probes significantly reduce com-
putation, performing the interpolation at every receiver in real time is still too
expensive. The interpolation provides an approximation for the incoming ra-
diance in a direction at a receiver, but to calculate outgoing radiance we must
integrate the incoming radiance over a hemisphere at the receiver; since it re-
quires densely sampling an integral, this operation is too expensive to perform
in real time. To overcome this, SRP factors the radiance coefficients out of this in-
tegral and precomputes the resulting integral (section 4.3). This precomputation
yields a set of transport coefficients for each receiver.

For simple scenes, a weighted sum of the radiance coefficients and transport
coefficients for a receiver is enough to compute diffuse indirect irradiance in
real time. However, this is not possible for more complex scenes, as storing
the transport coefficients for every receiver can easily consume gigabytes of
memory. The last component of SRP is compression. Section 4.5 covers how SRP
uses clustered principal component analysis (CPCA) to compress its transport
coefficients.

20

CHAPTER 4. SPARSE RADIANCE PROBES: THEORY

21

4.1. SPARSE INTERPOLATION

4.1 Sparse Interpolation

To avoid densely sampling the rendering equation (Equation 2.1) at every re-
ceiver, SRP builds upon the work of sparse interpolation techniques [48, 49].
Sparse interpolation techniques use a more accurate but more expensive method
to sample radiance at a sparse set of points and then reconstruct radiance at
a denser set of points by interpolating between those sparse samples. SRP
calls the sparse sample points radiance probes, and the dense sample points
receivers. The receivers interpolate between nearby probes to approximate
their incoming radiance (Figure 4.1).

Ward et al. [48] introduced this idea with the following interpolator:

L(x, ω) ≈
∑n

i wi(x)L(pi, ω)∑n
k wk(x)

(4.3)

where x is a receiver, n is the probe count, L(pi, ω) is the incoming radiance
for a probe pi in direction ω, and wi(x) is a weight controlling how much of
probe i’s radiance contributes to the receiver’s radiance.

SRP uses a weighting function based on the distance between pi and the
receiver x from Lehtinen et al. [50]:

w(t) = 2t3 − 3t2 + 1 0 ≥ t ≤ 1

0 otherwise
(4.4)

where t is ‖x− pi‖/r and r is a cut-off radius that defines the maximum
distance at which a probe contributes to a receiver.

There are two main issues with the interpolator in Equation 4.3: first, it suffers
from parallax error, and second, it does not account for visibility. The remainder
of this section describes how SRP addresses these two issues and then defines
SRP’s interpolator.

22

CHAPTER 4. SPARSE RADIANCE PROBES: THEORY

A

B

C

Figure 4.1: A top-down view of receivers and probes in a scene. The dark grey
boxes represent geometry, the light grey circles distributed over the geometry
represent the dense set of receiver points, and the larger green circles represent
the sparse set of radiance probes. The coloured circles around the highlighted
receivers represents their cut-off radius (i.e. the maximum distance at which a
probe can contribute to a receiver). The receivers interpolate their radiance from
nearby probes; for example, receiver A interpolates its radiance from probes p0
and p1. Probe p1 contributes more to A than probe p0 as it is closer; receiver B

interpolates from probes p1 and p2; and receiver C interpolates from probe p2.

23

4.1. SPARSE INTERPOLATION

4.1.1 Parallax Error Correction

Parallax error occurs in Ward’s interpolater (Equation 4.3) when the incoming
radiance observed by a probe in a direction ω comes from a different location
than the radiance observed by a receiver in that same direction ω. The only
scenarios this does not occur in are when either a probe is in the same location
as a receiver or the source of the radiance is at infinity (e.g. an environment
map). Parallax error is an issue when the radiance observed differs between the
probe and receiver (Figure 4.2a); it is less of an issue with low-frequency diffuse
lighting but becomes more noticeable with higher frequency changes such as
harsh shadows.

x

p1
p0

ω

ω
ω

(a) Parallax error. Sampling in the same

direction ω at probes p0 and p1 is incorrect

due to parallax error. Probe p1 incorrectly

samples the darker wall.

x

p1p0
ω

φ(ω)
φ(ω)

Γ(x, ω)

(b) Parallax error correction. Sampling

in the corrected direction φ(ω) means

the probes correctly sample from the

same surface point Γ(x, ω) that x sees in

direction ω.

Figure 4.2: Example of parallax error in (a), and its correction in (b).

To account for parallax error, we sample in a corrected direction φ(ω), instead
of the same sample direction ω used at a probe (Figure 4.2b). The corrected
direction points from the probe towards the same point in the scene the receiver
sees in the direction ω.

24

CHAPTER 4. SPARSE RADIANCE PROBES: THEORY

We calculate the corrected direction using the following equation:

φ(ω) = φ(x,pi, ω) = Γ(x, ω)− pi (4.5)

where Γ(x, ω) is the ray-cast operator that returns the intersection point of a
ray fired from x in direction ω.

4.1.2 Mutual Visibility

Equation 4.5 accounts for parallax error, but the observed radiance in the cor-
rected direction may still be incorrect as it does not account for visibility. If an ob-
ject o lies between p and the intersection point Γ(x, ω), then the radiance from o

will be incorrectly accounted for, instead of the radiance from Γ(x, ω) (Figure 4.3).

Previous methods before SRP have accounted for visibility, but only by
checking between the receiver point x and probe p [42]. This check is not enough
to be correct. The surface point Γ(x, ω) must be mutually visible to the receiver
and the probe. Both the receiver and the probe must see Γ(x, ω).

x

p1p0
ω

φ(ω) φ(ω)

Γ(x, ω)

o

Figure 4.3: Mutual visibility. In this case, there is an object o between probe p1
and the surface point Γ(x, ω). Without accounting for mutual visibility, probe p1
incorrectly samples from the object o; instead of discarding the sample.

25

4.2. BAND-LIMITED PROBES

4.1.3 Interpolation Operator

SRP combines the parallax error correction and mutual visibility check into one
interpolator:

L(x, ω) =

∑n
i wi(x)Vi(ω)Lp(pi, φ(ω))∑n

k wk(x)Vk(ω)
(4.6)

If all surfaces are diffuse, the interpolator (Equation 4.6) is exact given an
infinite resolution sampling at the probes, and that the point Γ(x, ω) can see at
least one probe [6].

4.2 Band-Limited Probes

To make sparse interpolation viable for real-time use, SRP stills needs an efficient
way to compute incoming radiance L(pi, ω) at each probe pi. Even though
there are considerably fewer probes than receivers, a high-resolution sampling
of the incoming radiance at each probe is still too expensive, both in terms of
computation and in storage required. As a cheaper alternative, SRP band-limits
the radiance at the probes by encoding it in a spherical harmonic basis:

L(pi, ω) ≈
∑
j

λijYj(ω) (4.7)

where each radiance coefficient λij is an element of the probe radiance vector
λ. This vector contains the radiance coefficients for all probes. For convenience,
this thesis indexes λwith probe index i and the basis function index j.

Band-limiting radiance at the probes trades high-frequency information for
much-needed execution speed and storage. For diffuse surfaces, the main source
of high-frequency information comes from sharp changes in albedo or visibility.
As an example, if an object casts a hard-edged shadow onto a surface, a low-
frequency probe will not capture the sharp change in radiance it causes; this
can cause areas to appear brighter than is correct. For spherical harmonics, it is
possible to bring back high-frequency information by increasing the number of
coefficients a probe uses; however, the cost increases quadratically, since each
order n requires (n+ 1)2 coefficients.

26

CHAPTER 4. SPARSE RADIANCE PROBES: THEORY

4.3 Precomputed Local Transport Operator

To combine the interpolation operator from Equation 4.6 with the band-limited
probes from Equation 4.7, SRP defines a local transport operator Px(λ) for every
receiver x. This operator transforms incoming radiance in the probe radiance
vector λ into incoming indirect radiance at a receiver x:

Px(λ, ω) =

∑n
i wi(x)Vi(ω)

∑
j λijYj(φ(ω))∑n

k wk(x)Vk(ω)
(4.8)

While significantly cheaper than densely sampling the rendering equation at
every receiver, the local transport operator is still too expensive to evaluate in
real time. To see why this is, recall that the final goal of SRP is not to compute
incoming indirect radiance at each receiver, but to compute outgoing indirect
radiance towards the camera. To do this for diffuse surfaces, we must calculate
irradiance over a hemisphere centred at x:

I(x) =

∫
Ω

Px(λ, ω) cos θdω (4.9)

Again, we come up against an integral which is too expensive to sample in
real time. As the mutual visibility and parallax-corrected radiance terms in the
local transport operator depend on the variable we are integrating over ω, we
must evaluate these terms many times to converge on the solution to the integral.
To overcome this expense, SRP factors the probe radiance vector λ out of the
integral and then precomputes the remaining components of the integral offline.
This can be done because λ does not depend on the direction ω. Due to this
precomputation, geometry must remain static, but lighting can still change at
runtime. The next section covers the steps to factor λ out of Equation 4.9.

27

4.4. IRRADIANCE TRANSPORT

4.4 Irradiance Transport

This section describes how to factor the probe radiance vector λ out of the
irradiance integral in Equation 4.9.

Starting with the irradiance transport integral from Equation 4.9:

I(x) =

∫
Ω

Px(λ, ω) cos θdω

=

∫
Ω

∑n
i wi(x)Vi(ω)

∑
j λijYj(φ(ω))∑n

k wk(x)Vk(ω)
cos θdω

We bring the radiance coefficients out of the integral:

=

∫
Ω

∑
i

∑
j

λij
wi(x)Vi(ω)Yj(φ(ω))∑

k wk(x)Vk(ω)
cos θdω

=
∑
i

∑
j

λij

∫
Ω

wi(x)Vi(ω)Yj(φ(ω))∑n
k wk(x)Vk(ω)

cos θdω

Then, we define the transport kernel Kij(x, ω):

Kij(x, ω) =

wi(x)Vi(ω)Yj(φ(ω))∑n

k wk(x)Vk(ω)
if
∑n

k wk(x)Vk(ω) > 0

0 otherwise
(4.10)

Leaving us with:

I(x) =
∑
i

∑
j

λij

∫
Ω

Kij(x, ω) cos θdω (4.11)

SRP precomputes the integral in Equation 4.11 yielding a transport coefficient
αij for each probe i and basis function j at a receiver x:

αij =

∫
Ω

Kij(x, ω) cos θdω (4.12)

I(x) =
∑
i

∑
j

λijαij (4.13)

28

CHAPTER 4. SPARSE RADIANCE PROBES: THEORY

Equation 4.13 provides an efficient way to transform the incoming irradiance
at the probes into indirect irradiance at a receiver point. To convert to outgoing
indirect radiance, we multiply at runtime by the Lambertian BRDF ρ

π
.

4.5 Clustered Principal Component Analysis

Sections 4.1-4.3 show how SRP reduces evaluating indirect diffuse irradiance
at a receiver x to a dot product between the probe radiance vector λ and a
precomputed transport vector α (Equation 4.13). This is efficient to evaluate
but impractical as storing a transport vector α per receiver requires a significant
amount of memory. To reduce the amount of memory, SRP compresses the
transport vectors using clustered principal component analysis (CPCA) [17].

CPCA is an important part of SRP’s scalability. A medium-sized scene with
around 200 000 receivers, 100 probes, and 192 coefficients (order-7 spherical
harmonics) would use 28.61 GB if stored in 16-bit floating point. To put this in
perspective, an iPhone 7 only has 2 GB of shared memory between the GPU and
CPU, and the largest amount of memory available on current high-end GPUs
like the AMD FirePro W1900 or NVIDIA Quadro GV100 is 32 GB.

This section describes how CPCA compresses the transport vectors for SRP.
CPCA works by dividing receivers into clusters. In each cluster, it uses principal
component analysis (PCA) to find the axes which best describe the variation in
the transport vectors. The top nc axes are kept along with weights which describe
how to reconstruct the transport vectors using the nc axes. As nc lowers, less
memory is used, but the higher the error in the reconstructed transport vectors.

4.5.1 Cluster Compression

To compress the transport vectors within a cluster, we perform PCA on each
cluster. To do this, we first define a cluster transport matrix T c where the ith row
of Tc contains the transport vector for the ith receiver in a cluster.

29

4.5. CLUSTERED PRINCIPAL COMPONENT ANALYSIS

We then compute the SVD of Tc:

Tc
n×n

= U
n×n
× Σ

n×ninj

× V T

ninj×ninj

(4.14)

The SVD decomposes Tc into three matrices: U , Σ, and V T . U is a n× n matrix
where n is the number of receivers in the cluster, Σ is a n× ninj matrix, and V T

is a ninj × ninj matrix where ni is the number of probes, and nj is the number
of basis functions used to represent radiance at a probe. The notation n× ninj is
short for n × (ni × nj), where ni × nj is a scalar; in this case, n is the number of
rows in the matrix, and ni × nj is the number of columns.

To compress Tc, we keep only the first nc columns of the matrix U and the first
nc rows of the matrix Σ:

Tc
n×n
≈ Uc

n×nc

× Σc
nc×ninj

× V T

ninj×ninj

(4.15)

To evaluate indirect irradiance at runtime, we save two matrices. The cluster
projection matrix ΣcV

T , which contains the top nc principal axes; and the receiver
reconstruction matrix Uc, which contains reconstruction weights for each receiver in
the cluster. Section 4.5.2 describes how these matrices are used to evaluate indirect
irradiance at runtime.

As the receivers in a cluster are near each other, each cluster only uses a small
subset of the total probes in a scene. This means the cluster projection matrix ΣcV

T

contains many zero-columns. Further compression is possible if only the non-zero
columns and their offsets are stored.

4.5.2 Runtime Reconstruction

At runtime, SRP evaluates indirect illumination in two steps. First, each cluster
projection matrix ΣcV

T is multiplied with the probe radiance vector λ to produce
a nc dimensional light basis vector l for each cluster. Second, the receiver recon-
struction matrix Uc is multiplied with the light basis vector l to produce an nk

dimensional vector containing the diffuse indirect irradiance for each receiver
in the cluster. To convert irradiance to outgoing radiance when shading, each
element of the nk dimensional vector is multiplied by the surface albedo and
divided by π.

30

Chapter 5

Sparse Radiance Probes:
Implementation

Figure 5.1: Sparse Radiance Probes implementation running in LlamaEngine.

This chapter covers my implementation of SRP (Figure 5.1). It describes the run-
time implementation first in section 5.1, followed by the pipeline for precomputing
the transport coefficients in section 5.6. I developed the implementation within
LlamaEngine, a 3D rasteriser and rendering framework developed by myself and
a fellow Master’s student Thomas Roughton. Appendix A provides more details
on LlamaEngine.

31

5.1. RUNTIME OVERVIEW

5.1 Runtime Overview

At runtime, the implementation is split across several passes on the GPU. These
passes are listed below. Passes 2-5 reference sections which describe them in
more detail. Figure 5.2 shows how data flows between these passes and where
precomputed data is used.

1. Lightmap Update
This pass rasterises the direct illumination in the scene to a lightmap.

After the first loop of the algorithm, this pass also accounts for secondary
indirect light bounces. It adds the contribution of the indirect illumination
lightmap from the previous frame to the direct illumination lightmap. This
creates a feedback loop, as the probes updated in the next pass now see the
indirect lighting from the previous frames.

2. Probe Update (Section 5.2)
This pass uses the lightmap from the previous step to update the probe
radiance vector λ.

3. Cluster SVD Projection (Section 5.3)
This pass computes a light basis vector l for every cluster p by multiplying
each precomputed cluster projection matrix by the probe radiance vector λ.

4. Irradiance Transport (Section 5.3)
This pass takes in the light basis vectors [l]p

1 from the previous pass and
multiplies each one with the corresponding receiver reconstruction matrix
[Uc]p. This results in a n-dimensional vector which contains the recon-
structed irradiance for the nth receiver in that cluster. The pass saves
the reconstructed irradiance at each receiver’s location in a new indirect
illumination lightmap κ.

5. Forward Render Pass (Section 5.4)
Finally, the forward render pass samples the indirect irradiance from the
indirect illumination lightmap κ and adds it the direct lighting. A dilation
pass is also run before the forward pass on the lightmap to remove dark
seams around geometry edges (section 5.5).

1Per cluster vectors and matrices are indexed with square brackets. e.g. [l]0 is the light basis
vector for cluster 0.

32

CHAPTER 5. SPARSE RADIANCE PROBES: IMPLEMENTATION

2.
Pr

ob
e

U
pd

at
e

λ

1.
Li

gh
tm

ap
U

pd
at

e

3.
C

lu
st

er
SV

D
Pr

oj
ec

ti
on

(s
ec

ti
on

5.
2)

lig
ht

m
ap

U
V

sa
m

pl
es

an
d

ba
si

s
fu

nc
ti

on
s

di
re

ct
lig

ht
m

ap

cl
us

te
r

pr
oj

ec
ti

on
m

at
ri

ce
s

4.
Ir

ra
di

an
ce

Tr
an

sp
or

t

re
ce

iv
er

re
co

nt
ru

ct
io

n
m

at
ri

ce
s

5.
Fo

rw
ar

d
R

en
de

r
Pa

ss

[l
] p

=
[Σ

c
V
t]
p
λ

di
re

ct
+=

κ
p
r
ev
io
u
s
(u

v)
×
ρ

new
fra

m
e

[l
] p

κ

[U
c
] p

[Σ
c
V
T
] p

di
re

ct
+=

κ
(u

v)
×
ρ

 I
(x

0
)

=
∫ Ω
P
x
0
(λ
,
ω

)
co

s
θ

I
(x

1
)

=
∫ Ω
P
x
1
(λ
,
ω

)
co

s
θ

. . .

I
(x

n
)

=
∫ Ω
P
x
n
(λ
,
ω

)
co

s
θ

 ≈
[U

c
] p

[l
] p

(s
ec

ti
on

5.
3)

(s
ec

ti
on

5.
3)

λ
ij

=
∫ Ω
L

(p
i,
ω

)Y
j
(ω

)d
ω

(s
ec

ti
on

5.
4)

Fi
gu

re
5.

2:
Fl

ow
di

ag
ra

m
of

th
e

pa
ss

es
us

ed
in

m
y

SR
P

im
pl

em
en

ta
ti

on
.E

ac
h

bo
x

re
pr

es
en

ts
a

pa
ss

,a
nd

th
e

ar
ro

w
s

be
tw

ee
n

th
e

bo
xe

s
sh

ow
ho

w
da

ta
flo

w
s

be
tw

ee
n

pa
ss

es
.A

rr
ow

s
or

ig
in

at
in

g
ou

ts
id

e
bo

xe
s

re
pr

es
en

tp
re

co
m

pu
te

d
da

ta
.S

ec
tio

n
5.

1
pr

ov
id

es
an

ov
er

vi
ew

fo
r

ea
ch

p
as

s.
κ

is
an

in
d

ir
ec

t
ill

u
m

in
at

io
n

lig
ht

m
ap

,ρ
is

th
e

al
be

d
o

fr
om

th
e

L
am

be
rt

ia
n

B
R

D
F;
λ

is
th

e
p

ro
be

ra
di

an
ce

ve
ct

or
(s

ec
tio

n
4.

2)
;U

c
,Σ

c
,a

nd
V
t

ar
e

C
PC

A
m

at
ri

ce
s

us
ed

to
re

co
ns

tr
uc

tt
he

tr
an

sp
or

tv
ec

to
rs

(s
ec

tio
n

4.
5.

1)
;a

nd
l

is
th

e
lig

ht
ba

si
s

ve
ct

or
(s

ec
tio

n
4.

5.
2)

.A
s

th
er

e
is

a
se

to
fC

PC
A

m
at

ri
ce

s
an

d
a

lig
ht

ba
si

s
ve

ct
or

fo
r

ea
ch

cl
us

te
r,

ea
ch

is
in

de
xe

d
by

th
e

cl
us

te
r

in
de

x
p

(e
.g

.[
l]
p

is
th

e
lig

ht
ba

si
s

ve
ct

or
fo

r
cl

us
te

r
p)

.

33

5.2. RADIANCE COEFFICIENT GENERATION

5.2 Radiance Coefficient Generation

SRP transforms direct illumination stored in the probe radiance vector λ into indirect
irradiance at a receiver by convolving it (which can be performed with a dot product)
with a precomputed transport vector α. GPUs can perform this operation in real
time, but we still must update λ every frame to support real-time dynamic changes
in lighting. To update λ, we must project the radiance at each probe into spherical
harmonics using the following equation:

λij =

∫
L(pi, ω)Yj(ω)dω (5.1)

My implementation solves this equation using Monte Carlo integration on the
GPU. If needed, section 2.4 and 2.5 cover necessary background on spherical har-
monics and Monte Carlo integration respectively. To describe my implementation,
I start with a serial implementation on the CPU (Source Code 5.1) and then show
how to convert it to a compute shader implementation on the GPU (Source Code 5.3).
The serial implementation in Source Code 5.1 loops through all of the probes in a
scene and computes the jth basis coefficient by summing each sample, L(pi, ω)Yj(ω),
multiplied by a weight. As the samples are uniformly distributed over the unit sphere,
the weight is 4π

N
where N is the number of sample directions.

To evaluate the incoming radiance L(pi, ω) at a probe, the algorithm samples
from either a direct illumination lightmap or an environment map. If a ray fired
from a probe in a sample direction hits a surface, the algorithm samples from a
direct illumination lightmap; if it misses a surface, it samples from an environment
map. As casting a ray for every sample at runtime is too expensive, the samples are
precomputed; for samples that hit scene surfaces, the lightmap UV coordinate of the
hit location is saved, while the sample direction is saved for samples that miss. The
basis functions are also precomputed in the directions of the precomputed samples.
The only operations we must perform at runtime are sampling from the lightmap or
environment map, multiplying by the appropriate precomputed basis function and
weight, and summing the irradiance samples. Source Code 5.2 shows an updated
serial algorithm which uses two precomputed sample buffers: one buffer of lightmap
UVs for the samples that hit and another buffer of directions for samples that missed.

34

CHAPTER 5. SPARSE RADIANCE PROBES: IMPLEMENTATION

1 for i in 0..<p.count {

2 for omega in p[i].sampleDirections {

3 for j in 0..<coefficientsPerProbeCount {

4 lambda[i][j] += L(p[i], omega) * Y(j, omega) * weight

5 }

6 }

7 }

Source Code 5.1: Serial probe projection code on the CPU. p is an array of probes,
p[i].sampleDirections is an array of uniformly distributed sample directions over a unit
sphere, lambda is the probe radiance vector, L is a function returning the incoming radiance at
a probe in a direction, Y(j, omega) evaluates the jth spherical harmonics basis function in the
direction omega. Lastly, weight is 4π

N
(the surface area of the unit sphere, and the inverse of the

sampling probability distribution function (PDF) for the rays) where N is the number of sample
directions per probe.

1 for i in 0..<p.count {

2 // Accumulate for samples that hit geometry.

3 for uv in p[i].hitSampleDirections {

4 let sample = lightmap.sample(uv)

5 for j in 0..<coefficientsPerProbeCount {

6 lambda[i][j] += sample * Y[i][j] //

7 }

8 }

9

10 // Accumulate for samples that missed geometry.

11 for omega in p[i].missSampleDirections {

12 let sample = environmentMap.evaluate(omega)

13 for j in 0..<m {

14 lambda[i][j] += sample * Y[i][j] //

15 }

16 }

17 }

Source Code 5.2: Serial probe projection code on the CPU using precomputed sample data. Pre-
computed sample rays that hit surfaces sample from a lightmap using the UV coordinates of the
hit location. Precomputed sample rays that miss sample from an environment map. Y is a buffer of
basis functions evaluated in the precomputed sample directions and multiplied by the weight 4π

N
.

35

5.2. RADIANCE COEFFICIENT GENERATION

To implement this algorithm on the GPU, we must split the work into smaller
chunks so it can execute the work in parallel. I perform the projection for
all probes in a single compute pass. The pass assigns each probe to its own
threadgroup 2 and then each thread within that threadgroup handles a subset of
the total samples for a probe. More specifically, each thread performs the sums
on lines 6 and 14 of the serial algorithm in Source Code 5.2 for the subset of
samples it is assigned. Each thread saves the result of each sum in threadgroup
memory and then waits at a threadgroup memory barrier. This barrier blocks the
execution of a thread until all threads in its threadgroup have reached the barrier.
The first j threads in each threadgroup then sum the sums stored in threadgroup
memory to produce each coefficient λij for a probe. Source Code 5.3 contains
pseudocode for the compute kernel.

5.2.1 Sample Generation

For our use case, Monte Carlo integration requires uniformly distributed samples
to produce correct results [15]. For each probe pi, I generate uniform samples
over a sphere centred at the probe using stratified sampling.

Stratified sampling works in two steps. First, we evenly distribute n samples
over a unit square. To do this, we divide the square into a

√
n ×
√
n grid and

then choose a random sample point (x, y) within each cell. Second, we map each
sample point (x, y) to the surface of the unit sphere (θ, φ):

[
θ

φ

]
=

[
2 cos−1(

√
1− x)

2πy

]
(5.2)

2I use threadgroup and other terminology from the Metal Shading Language to describe my
implementation; see section 2.6 for definitions.

36

CHAPTER 5. SPARSE RADIANCE PROBES: IMPLEMENTATION

1 kernel void projectProbes() {

2 // Offset for threadgroupSums buffer.

3 int o = threadIndexInThreadgroup * coefficientsPerProbeCount;

4

5 for(int i = 0; i < hitSamplesPerThread; i += 1) {

6 float2 uv = hitSampleDirections[o + i];

7 float3 s = lightmap.sample(uv);

8 for(int j = 0; j < coefficientsPerProbeCount; j += 1) {

9 threadgroupSums[o + j] += s * Y[threadIndex * i][j];

10 }

11 }

12

13 for(int i = 0; i < missSamplesPerThread; i += 1) {

14 float3 direction = missSamples[i];

15 float3 sample = environmentMap.evaluate(direction);

16 for(int j = 0; j < coefficientsPerProbeCount; j += 1) {

17 threadgroupSums[o + j] += s * Y[threadIndex * i][j];

18 }

19 }

20

21 threadgroup_barrier(mem_flags::mem_threadgroup);

22

23 if (threadgroupIndex < coefficientsPerProbeCount) {

24 lambda[threadgroupIndex] = sumAt(threadgroupIndex, threadgroupSums);

25 }

26 }

Source Code 5.3: Parallel probe projection code on the GPU. For clarity and to save space, argu-
ments to the kernel function and offsets to account for multiple probes are omitted. Each thread
performs the sums for a subset of the total samples for a probe (lines 5 to 19). All threads then
wait until every thread has reached the threadgroup memory barrier (line 21). Lastly, the first j
threads then sum the sums saved in threadgroup memory to produce each coefficient λij using
the sumAt function (lines 23 to 25). Y is a buffer of basis functions evaluated in the precomputed
sample directions and multiplied by the weight 4π

N
.

37

5.3. CLUSTER SVD PROJECTION AND IRRADIANCE TRANSPORT

5.3 Cluster SVD Projection and Irradiance Transport

To produce the indirect illumination lightmap, two matrix multiplications must be
performed (section 4.5.2). I use one compute pass for each matrix multiplication.

The first compute pass, cluster SVD projection, multiplies the cluster projection
matrix ΣcV

T by the probe radiance vector λ and outputs a nc dimensional light
basis vector l for each cluster. To do this, each thread in the pass multiplies one row
of the cluster projection matrix by the probe radiance vector. Most of the columns
of the cluster projection matrix contain only zeroes as probes which lie outside the
cut-off radius for all receivers in a cluster make no contribution. These columns
are not stored. Instead, the thread loops through the number of non-zero columns
in the cluster projection matrix, and then uses a buffer to map each non-zero
column index to its actual column index in the original matrix so that the result of
the multiplication can be written to the correct element of the light basis vector.

The second pass, irradiance transport, reconstructs the irradiance at each
receiver in a cluster. To do this, it multiplies the receiver reconstruction matrices
with the corresponding light basis vector to produce the reconstructed indirect
irradiance for each receiver in a cluster. Each thread performs the multiplication
for a single receiver by multiplying a row of the receiver reconstruction matrix
for a cluster by the light basis vector for that cluster. The multiplication produces
the reconstructed indirect irradiance for that receiver which is then saved into an
indirect illumination lightmap at the corresponding texel for that receiver.

5.4 Forward Render Pass

In my implementation, a forward render pass performs the last step of adding the
contribution of the indirect lighting to the direct lighting by sampling from the
indirect illumination lightmap. When sampling from the texture, it uses a linear
texture filter to produce a smoothly blended result. While a forward renderer is
used here, this could equally be performed in the geometry pass of a deferred
lighting setup.

38

CHAPTER 5. SPARSE RADIANCE PROBES: IMPLEMENTATION

5.5 Lightmap Dilation

Dark seams can occur around the edges of geometry due to the limited resolution
of lightmaps (Figures 5.3a and 5.3b). As texels inside of geometry are black, when
the forward render pass samples the lightmap using a linear filter, it blends the
black texels inside of geometry with the texels outside of geometry causing dark
seams. To fix this, a dilation pass is run which extends valid texels that are beside
invalid black texels out by a one texel radius so that there are no longer any black
texels near the edges of geometry (Figures 5.3c and 5.3d).

I implement dilation in a compute shader pass, which runs over all texels in
the lightmap. If a texel has an alpha of one, then the texel is valid and the shader
leaves it as it is; however, if a texel has an alpha of zero, it is invalid, and so the
mean contribution of its valid neighbouring texels is used instead.

(a) Without lightmap dilation. (b) View from inside cuboid in (a)

(c) With lightmap dilation (d) View from inside cuboid in (c)

Figure 5.3: With and without lightmap dilation. Dark seams appear around the
edges of geometry in 5.3a due to invalid black receivers inside geometry blending
with valid receivers outside geometry. 5.3b shows these invalid texels from within
the cubeoid in 5.3a. 5.3d shows how lightmap dilation removes the seams by
extending valid texels so the invalid texels are no longer near edges.

39

5.6. TRANSPORT COEFFICIENT PRECOMPUTATION

5.6 Transport Coefficient Precomputation

This section describes my implementation of a pipeline for precomputing SRP’s
transport coefficients. Although the transport coefficient precomputation is run
on a high-end device, it still plays a part in the scalability of SRP as parameters
chosen for precomputation change SRP’s quality and performance at runtime.
The number of receivers and their positions, the number of probes and their
positions, the number of basis coefficients per probe, and the the number of PCA
vectors for compression are all parameters set at precomputation time which
affect the quality and performance of SRP.

One challenge of a GPU implementation is the limited memory available. As
discussed in section 4.5 on CPCA compression, storing a transport coefficient
for every receiver and every basis consumes many gigabytes of memory. This
means it is not possible to compute all transport coefficients at once. Fortunately,
each transport coefficient can be solved for independently which means the
precomputation can be performed in batches. Each batch computes the transport
coefficients for a portion of the receivers. The method computes the transport
coefficients for each batch on the GPU and then copies them to the CPU. It
then performs CPCA compression for that batch while computing the transport
coefficients for the next batch on the GPU at the same time. The process repeats
until all batches are complete.

For irradiance transport, the goal is to compute a transfer coefficient vector α
for every receiver x. To do this, we must solve the following integral (derived in
section 4.4) for every probe i and basis function j:

αij =

∫
Ω

Kij(x, ω) cos θdω (5.3)

To compute the transfer coefficients for each batch, I use a method which
progressively solves the integral in equation 5.3, in a manner similar to how
GPU path tracers like AMD’s RadeonProRender [51] progressively solve the
rendering equation. The method runs in passes, where one sample is taken per
receiver per pass. The more passes, the more samples per receiver, and the better
the estimate for each transport coefficient becomes.

40

CHAPTER 5. SPARSE RADIANCE PROBES: IMPLEMENTATION

Sections 5.6.1 to 5.6.5 cover how I compute the transport coefficients on the
GPU, and section 5.6.6 describes how I compress the coefficients using CPCA on
the CPU.

5.6.1 Overview

The method I use to compute the transport coefficients solves Equation 5.3
progressively in passes. The goal of each pass is to take one sample of the
transport kernel Kij for each receiver in the batch. In each pass, the following
five steps are performed:

1. Primary Ray Generation (Section 5.6.2)

Generate a ray for each lightmap texel (i.e. the receiver points x). The
direction of the ray is chosen from the hemisphere centred around the
worldspace normal of the texel.

2. Primary Ray Intersection (Section 5.6.3)

Run an intersection query for the generated rays.

3. Mutual Visibility Ray Generation (Section 5.6.4)

For each primary ray, and for all the probes that are within the cut-off
radius of the receiver the ray was fired from:

If the primary ray hit, generate a ray from the probe to the intersection
point. This ray is used in the next step to make sure the probe can see the
hit point.

If the primary ray missed, generate a ray from the probe in the direction of
the primary ray. This ray is used in the next step to make sure the probe
can see the environment lighting.

4. Mutual Visibility Check (Section 5.6.3)

Run an occlusion query for rays generated in previous step to check visibil-
ity between the probe and intersection or the probe and the environment
lighting.

41

5.6. TRANSPORT COEFFICIENT PRECOMPUTATION

5. Accumulation (Section 5.6.5)

Steps 1-4 generate the data necessary to perform one step of Monte Carlo
integration. To accumulate, for every receiver, sample each transport kernel
Kij(x, ω) for each nearby probe i, and basis function j, and then accumulate
each sample progressively using Welford’s method [52].

5.6.2 Primary Ray Generation

The first step for each batch is generating the primary rays from the receiver
points (Figure 5.4). To do this, my implementation uses a compute shader which
runs over all valid lightmap texels 3. The compute shader I used to do this was
based on a shader written by Thomas Roughton for their Master’s thesis on
path-traced lightmaps [53].

Figure 5.4: Visualisation of rays generated in the primary ray generation pass.
The red dots are ray origins and the white lines are ray directions.

3Not all texels in a lightmap are valid. Lightmap packing algorithms aim to pack surfaces as
tightly as possible into a two-dimensional texture but there will still be gaps. The receivers for
SRP are texels which map to a valid surfaces.

42

CHAPTER 5. SPARSE RADIANCE PROBES: IMPLEMENTATION

Each thread in the compute shader generates a ray. The ray’s origin is a point
chosen randomly within the lightmap texel, and the ray’s direction is chosen
using cosine weighted sampling over a hemisphere centred at the normal of the
receiver point.

Using cosine weighted samples has two benefits over uniform sampling.
First, Monte Carlo integration converges faster on a solution if the samples are
taken from a distribution similar to the integral it is solving [15]. Second, when
sampling from a non-uniform distribution, each sample of the function being
integrated must be divided by the inverse of the probability distribution function
(PDF). For Equation 5.3, dividing by the inverse PDF cancels with cosine term in
the integral we are solving. This means it is not necessary to multiply by cosine
when accumulating the samples in step 5.

To show this mathematically, the estimator for the transport coefficient where
p is the PDF is:

FN =
1

N

∑
ij

Kij(x, ω) cos θ

p(ω)
(5.4)

For cosine weighted samples, the PDF for sampling over a hemisphere is cosθ
π

:

FN =
1

N

∑
ij

Kij(x, ω) cos θ
cosθ
π

(5.5)

Which simplifies to:

FN =
π

N

∑
ij

Kij(x, ω) (5.6)

The factor of π can also be ignored if we compensate by not dividing the
diffuse albedo by π at runtime.

5.6.3 Primary Ray Intersection and Mutual Visibility Check

Both the primary ray intersection and mutual visibility check steps require ray
casting. LlamaEngine has integrated support for both Radeon Rays [54] and
Metal Performance Shaders [55], which both provide compute kernels for ac-
celerated ray intersection and occlusion queries. An intersection query returns

43

5.6. TRANSPORT COEFFICIENT PRECOMPUTATION

information about the surface the ray made an intersection with, while an occlu-
sion query only returns whether the ray hit or missed.

5.6.4 Mutual Visibility Ray Generation

This step generates the rays that the next step uses to check for mutual visibility.

For each primary ray, a compute shader generates a mutual visibility ray
for every probe that contributes to the receiver the ray was fired from. A probe
contributes if the weight term w(x) in the transport kernel is non-zero. In my
implementation, this means that the probe is within a certain radius of the
receiver. Therefore, I refer to these probes as nearby probes.

If the primary ray hits a surface, the mutual visibility ray for each nearby
probe points from the probe towards the intersection point. This makes sure
both the receiver and the probe can see the intersection point. I refer to these
rays as probe-to-intersection rays.

If the primary ray does not hit any surfaces, the mutual visibility ray for each
nearby probe instead points in the same direction as the primary ray. This makes
sure both the receiver and the probe can see the same point in the environment
lighting. Parallax error is not an issue with environment lighting as it is assumed
to be infinitely far away. I refer to these rays as probe-to-environment rays.

Probe-to-environment rays are important regardless of whether a scene in-
cludes environment lighting or not. Every transport coefficient still needs to
encode the fact that there is no radiance coming from a direction. Figure 5.5
shows the difference before and after accounting for probe-to-environment rays.

The direction of the probe-to-intersection ray is the parallax-corrected di-
rection φ(ω). The direction of the probe-to-environment ray is also technically
parallax corrected but is equal to the original direction ω. Step 5 uses the cor-
rected direction when evaluating the basis function in each transport kernel.

Lastly, there are two validation checks for probe-to-intersection rays. These
rays are marked as inactive if they do not pass these checks:

1. The probe must be in front of the intersection surface. Any probes behind
the surface of an intersection cannot see the surface.

44

CHAPTER 5. SPARSE RADIANCE PROBES: IMPLEMENTATION

2. The receiver-to-intersection direction must point in the opposite direction
to the intersection’s surface normal. Otherwise, the surface is facing away
from the receiver.

Figure 5.5: Before and after accounting for probe-to-environment rays. Both
renders used one directional light and had no environment lighting. In the
top render, probe-to-environment rays were not accounted for in the mutual
visibility ray generation step. This results in the image appearing too bright as
even though there is no environment lighting, the transport coefficients still need
to encode the fact that there is no radiance in a direction. In the bottom render,
the probe-to-environment rays have been correctly accounted for.

45

5.6. TRANSPORT COEFFICIENT PRECOMPUTATION

5.6.5 Accumulation

The last step in a pass accumulates one sample of the transport kernel Kij(x, ω)

for every receiver x, nearby probe i, and basis function j. Recall the transport
kernel from Equation 4.10 in section 4.4:

Kij(x, ω) =

wi(x)Vi(ω)Yj(φ(ω))∑n

k wk(x)Vk(ω)
if
∑n

k wk(x)Vk(ω) > 0

0 otherwise

To perform the accumulation, a compute shader runs over all the receivers in
the batch. Each thread of the compute shader first computes the denominator
shared between all the transport kernels; i.e. the total weighted-visibility for
all probes. To avoid looping through all probes, the thread looks up a buffer
precomputed on the CPU that contains a list of nearby probes for the current
receiver. The thread then sums the weights for each of the nearby probes which
pass the mutual visibility test. Mutual visibility is checked by reading from a
buffer generated by the occlusion pass in step 4.

If the total weighted-visibility is not zero, then for every probe that passes the
mutual visibility test, the thread updates the current estimate for the correspond-
ing transport coefficient aij by accumulating the contribution of the transport
kernel Kij for every basis function j in the corrected direction using Welford’s
method.

Welford’s method [52] is a single-pass algorithm for computing the mean of
a data set as samples become available. The method keeps track of the current
mean and weight of all samples. A new sample is added by subtracting the
mean from the new sample and multiplying by the weight.

If the total weighted-visibility is zero, then the sample is invalid. Ideally, the
total-weighted visibility will never be zero as there should be at least one nearby
probe for every sample that is mutually visible to a receiver and intersection
point. However, it is hard to guarantee this if probes are placed manually
like they are in my implementation. Additionally, an edge case occurs when a
lightmap texel is both inside and outside geometry (Figure 5.6). As the origin of a
primary ray can be offset anywhere within a texel, a sample ray’s origin could be
inside geometry in some passes and outside geometry in others. When it is inside

46

CHAPTER 5. SPARSE RADIANCE PROBES: IMPLEMENTATION

Figure 5.6: Left: Using an incorrect per sample weight. In general, the render
appears too dark. Additionally, dark seams appear near edges in geometry
(regions (a) and (b)). The green region (b) is enlarged to show a receiver inside
and outside geometry. The outlined square in the enlarged green region is a
single receiver. The dotted line is inside the geometry, and the solid line is outside.
Samples inside the geometry incorrectly contribute zero radiance so when they
are mixed with correct samples outside geometry the receiver appears darker
than it should. Right: Using the adjusted sample weight correctly accounts for
invalid samples.

geometry, the receiver cannot see any probes and so the total weighted-visibility
is zero making the sample invalid.

The per sample weight must be adjusted to account for these invalid samples.
If all samples were valid, then the per sample weight would be 1

N
where N is

the number of passes. However, if this per sample weight is used then areas
will appear darker than they should (Figure 5.6 left) as invalid samples are
accumulated as if no radiance came from the sample direction. Instead, the per
sample weight is 1

M
where M is the number of valid samples.

47

5.6. TRANSPORT COEFFICIENT PRECOMPUTATION

5.6.6 Clustered Principal Component Analysis

After the transport coefficients have been computed for a pass, they are compressed
on the CPU using CPCA. My implementation is mainly based off the original paper
by Sloan et al. [17] but I have only implemented the static version of CPCA without
iterative or adaptive refinement.

For each cluster in a batch, I create a cluster transport matrix T c where each row
contains the transport coefficients for each receiver in a cluster. To compute the SVD of
this matrix, I use the dgesvd routine from the LAPACK library [56].

The clusters CPCA compresses can be computed in multiple ways. Sloan et al. [17]
use the Linde–Buzo–Gray algorithm [57] to perform the clustering but Silvennoinen and
Lehtinen [6] instead use an axis-aligned bounding box tree (AABB) clustering technique
as it produces smaller clusters. This speeds up compression as computing the SVD for
large matrices is expensive.

To implement AABB clustering, I start with an AABB enclosing all the receivers at
the root node, the AABB is divided in half by making a split orthogonal to its longest
axis, and a child node is added for each half (Figure 5.7). I repeat this process recursively
until the leaves of the AABB tree contain at most 1024 receivers.

Figure 5.7: AABB Clustering Cut. The dotted red line shows the cut made orthogonal
to the longest axis of a scene by the AABB clustering algorithm.

48

Chapter 6

Results

(a) AMD Vega 56: 50.2 FPS (19.9 ms) (b) iPhone 7: 31.5 FPS (31.7 ms)

Figure 6.1: SRP scaling from a dedicated graphics card down to a mobile phone.
Left: 2017 Macbook Pro with an externally connected AMD RX Vega 56 graphics
card. Right: Apple iPhone 7.

To determine whether SRP is scalable across a range of hardware, I performed
three experiments which tested my implementation of SRP on a low-end, mid-
range, and high-end device. The low-end device was an iPhone 7, the mid-range
was a 2017 Macbook Pro with a Radeon 560 graphics card, and the high-end
device was the same 2017 Macbook Pro with an AMD RX Vega 56 graphics
card externally connected via a Sonnet eGFX Breakaway Box 550 (see Table 6.1
for more details). Four test scenes of varying complexity were used for the
experiments. The complexity of a scene in this thesis is based on triangle count.

49

Section 6.1 provides details on the four test scenes. As a preview of the results,
Figure 6.1 shows my SRP implementation running the most complex test scene
used in this thesis Crytek Sponza in real time and scaling from a Macbook with a
high-end graphics card down to an iPhone 7.

The first experiment was a visual quality (section 6.2) and performance
evaluation (section 6.3). The aim of the visual quality evaluation was to show
how my SRP implementation visually compared to a path-traced lightmap
reference and to direct-only lighting. The aim of the performance evaluation was
to show how my SRP implementation performed in terms of frame time over
the four test scenes across the three test devices.

The second experiment was to see whether using higher order spherical
harmonics is worth the extra computation cost on low-end devices (section 6.4).
To do this, I compared an order-7 reference image of a scene to the same scene
rendered with lower order spherical harmonics. As well as comparing the entire
image, I also compared specific regions within the image to see if error decreased
at different rates for high and low frequency areas.

The last experiment focuses on scalability (section 6.5). It shows how frame
time changes as spherical harmonic order, probe count, and receiver count is
increased. The aim of this experiment was to see if and how changing these
parameters could help improve the performance of SRP and allow more complex
scenes to scale down and run in real time on the iPhone 7.

50

CHAPTER 6. RESULTS

D
ev

ic
e

G
ra

ph
ic

s
C

ar
d

G
ra

ph
ic

s
M

em
or

y
32

-B
it

FL
O

PS
Lo

w
-E

nd
iP

ho
ne

7
A

pp
le

A
10

C
hi

p
2

G
B

Sh
ar

ed
25

0
G

F
L

O
P

S
*

M
id

-R
an

ge
M

ac
bo

ok
Pr

o
20

17
A

M
D

R
ad

eo
n

56
0

4
G

B
D

ed
ic

at
ed

2.
61

1
T

F
L

O
P

S

H
ig

h-
En

d
M

ac
bo

ok
Pr

o
20

17
A

M
D

R
ad

eo
n

R
X

Ve
ga

56
8

G
B

D
ed

ic
at

ed
10
.5

7
T

F
L

O
P

S

Ta
bl

e
6.

1:
Th

e
th

re
e

te
st

de
vi

ce
s.

* A
pp

le
do

es
no

tp
ro

vi
de

G
FL

O
P

sp
ec

ifi
ca

tio
ns

fo
r

its
ch

ip
s

bu
ti

ti
s

es
tim

at
ed

to
be

ar
ou

nd
25

0
G

F
L

O
P

S
[5

8]
.

51

6.1. TEST SCENES

6.1 Test Scenes

For the visual quality and performance evaluations, two simple scenes and two
complex scenes were used (Table 6.2). Complexity is based on triangle count.
The two simple scenes were Cornell Box, a scene often used as a benchmark
for global illumination algorithms [59]; and Blue-Orange Box, a scene I created
which is similar to Cornell Box but longer in length and with the boxes closer
to scene surfaces to show indirect shadowing. The complex test scenes were
Modern Hall [60] and Crytek Sponza [61].

The precomputation for all the scenes was performed using 4096 sample
rays per receiver, 1024 sample rays per probe, and 32 PCA vectors per cluster
for CPCA compression. The probes were manually placed near scene surfaces,
and all scenes were rendered at a resolution of 1334 × 750 on all devices. This
resolution was chosen as it is the maximum possible on the iPhone 7; however,
note that the cost of the algorithm depends mainly on the lightmap resolution,
not the screen resolution, as the main overhead during the lighting pass is a
single filtered texture sample of the runtime-generated lightmap.

6.2 Visual Quality Evaluation

To perform the visual quality evaluation, my SRP implementation is compared
to a ground-truth reference and to direct-only lighting. As the receivers in my
implementation are lightmap texels, path-traced lightmaps were used as the
ground-truth reference. Path-traced lightmaps are accurate but significantly
more expensive than SRP, taking seconds or even minutes to produce renders
without noise. They were generated using a progressive lightmapper devel-
oped by Thomas Roughton for their Master’s thesis [53]. All of the path-traced
lightmap reference images were rendered on the AMD RX Vega 56 graphics card.

Figures 6.2 and 6.3 show rendered views of the four test scenes. These figures
compare SRP order-7 spherical harmonics with the path-traced reference as well
as direct-only lighting renders. The direct-only renders show the significant
difference indirect lighting makes. All of the scenes rendered with SRP are
visually comparable to the path-traced lightmap reference renders but there are

52

CHAPTER 6. RESULTS

some differences. To make these differences clearer, Figures 6.4 and 6.5 show
the same renders with only the contribution of the indirect lighting and without
multiplying the indirect lighting by the albedo in the forward pass.

Name Triangle Count Probe Count Receiver Count
Cornell Box 94 27 40 564

Blue-Orange Box 96 20 50 784

Modern Hall 28862 108 103 605

Crytek Sponza 262267 160 437 557

Table 6.2: Test scenes used for the visual and performance evaluations.

53

6.2. VISUAL QUALITY EVALUATION

Fi
gu

re
6.

2:
V

is
ua

lc
om

pa
ri

so
n

be
tw

ee
n

pa
th

-t
ra

ce
d

lig
ht

m
ap

s,
SR

P,
an

d
di

re
ct

lig
ht

in
g

fo
r

th
e

tw
o

si
m

pl
e

te
st

sc
en

es
.E

ac
h

im
ag

e
ha

s
its

re
nd

er
tim

e
be

ne
at

h
it.

Th
e

pa
th

-t
ra

ce
d

lig
ht

m
ap

s
ha

ve
a

si
ng

le
re

nd
er

tim
e

m
ea

su
re

d
on

th
e

A
M

D
R

X
Ve

ga
56

gr
ap

hi
cs

ca
rd

.S
R

P
an

d
di

re
ct

-o
nl

y
lig

ht
in

g
ha

ve
a

ti
m

e
fo

r
th

e
lo

w
-e

nd
iP

ho
ne

7
(L

),
th

e
m

id
-r

an
ge

R
ad

eo
n

56
0

(M
),

an
d

th
e

hi
gh

-e
nd

Ve
ga

56
(H

).

54

CHAPTER 6. RESULTS

Fi
gu

re
6.

3:
V

is
ua

lc
om

pa
ri

so
n

be
tw

ee
n

pa
th

-t
ra

ce
d

lig
ht

m
ap

s,
SR

P,
an

d
di

re
ct

lig
ht

in
g

fo
r

th
e

tw
o

co
m

pl
ex

te
st

sc
en

es
.E

ac
h

im
ag

e
ha

s
its

re
nd

er
tim

e
be

ne
at

h
it.

Th
e

pa
th

-t
ra

ce
d

lig
ht

m
ap

s
ha

ve
a

si
ng

le
re

nd
er

tim
e

m
ea

su
re

d
on

th
e

A
M

D
R

X
Ve

ga
56

gr
ap

hi
cs

ca
rd

.S
R

P
an

d
di

re
ct

-o
nl

y
lig

ht
in

g
ha

ve
a

ti
m

e
fo

r
th

e
lo

w
-e

nd
iP

ho
ne

7
(L

),
th

e
m

id
-r

an
ge

R
ad

eo
n

56
0

(M
),

an
d

th
e

hi
gh

-e
nd

Ve
ga

56
(H

).

55

6.2. VISUAL QUALITY EVALUATION

Fi
gu

re
6.

4:
In

di
re

ct
-o

nl
y

co
m

pa
ri

so
n

be
tw

ee
n

pa
th

-t
ra

ce
d

lig
ht

m
ap

s
an

d
SR

P
fo

r
th

e
tw

o
si

m
pl

e
te

st
sc

en
es

.M
ul

ti
pl

ic
at

io
n

by
th

e
su

rf
ac

e
al

be
do

is
om

it
te

d
in

or
de

r
to

m
or

e
cl

ea
rl

y
sh

ow
th

e
co

nt
ri

bu
ti

on
of

th
e

in
di

re
ct

lig
ht

in
g.

56

CHAPTER 6. RESULTS

Fi
gu

re
6.

5:
In

di
re

ct
-o

nl
y

co
m

pa
ri

so
n

be
tw

ee
n

pa
th

-t
ra

ce
d

lig
ht

m
ap

s
an

d
SR

P
fo

r
th

e
tw

o
co

m
pl

ex
te

st
sc

en
es

.M
ul

ti
pl

ic
at

io
n

by
th

e
su

rf
ac

e
al

be
do

is
om

it
te

d
in

or
de

r
to

m
or

e
cl

ea
rl

y
sh

ow
th

e
co

nt
ri

bu
ti

on
of

th
e

in
di

re
ct

lig
ht

in
g.

57

6.3. PERFORMANCE EVALUATION

6.3 Performance Evaluation

For the performance evaluation, the mean render time per frame was recorded
over 1000 frames. To show the performance difference between low and high-
order spherical harmonics, the frame time of SRP was recorded for both order-7
and order-2 spherical harmonics. Additionally, the frame time of direct lighting
was recorded to show the baseline cost of rendering a scene in LlamaEngine.

For the two simple test scenes, SRP ran in real time at a minimum of 60 FPS

across all three test devices for both order-7 and order-2 spherical harmonics
(Figure 6.6a-6.6b). SRP took more than twice as long to render on the iPhone 7
than on the two dedicated graphics cards. The performance gap between the
iPhone 7 and the dedicated graphics cards is also larger for SRP than for direct
lighting only. For example, for the Cornell Box scene, the difference between
SRP order-2 spherical harmonics and direct lighting on the Radeon 560 was 2 ms

yet on the iPhone 7 it was 9 ms.
The two complex test scenes ran in real time for the dedicated graphics

cards. However, only Modern Hall ran in real time on the iPhone 7 at 33.67 FPS

(29.7 ms per frame) for order-2 spherical harmonics. It ran slightly below real-
time for order-7 spherical harmonics at 21.34 FPS (46.84 ms per frame) (Figure
6.6c). Crytek Sponza ran at an interactive frame rates of 16.36 FPS (61.1 ms per
frame) for order-2 spherical harmonics and 13.24 FPS (75.5 ms per frame) for
order-7 (Figure 6.6d).

While these results show the complex test scenes do not run in real time on
the iPhone 7, the scalability results in section 6.5 show how the performance of
SRP can be scaled by reducing the receiver and probe count.

58

CHAPTER 6. RESULTS

iPhone 7 Radeon 560 Vega 56
Device

0

5

10

15

M
ea

n
Fr

am
e

D
ur

at
io

n
(m

s)

60FPSOrder 7
Order 2
Direct Only

(a) Cornell Box

iPhone 7 Radeon 560 Vega 56
Device

0

5

10

15

M
ea

n
Fr

am
e

D
ur

at
io

n
(m

s)

60FPSOrder 7
Order 2
Direct Only

(b) Blue-Orange Box

iPhone 7 Radeon 560 Vega 56
Device

0

20

40

M
ea

n
Fr

am
e

D
ur

at
io

n
(m

s)

60FPS

30FPS

Order 7
Order 2
Direct Only

(c) Modern Hall

iPhone 7 Radeon 560 Vega 56
Device

0

20

40

60

80

M
ea

n
Fr

am
e

D
ur

at
io

n
(m

s)

60FPS

30FPS

Order 7
Order 2
Direct Only

(d) Crytek Sponza

Figure 6.6: Mean frame times for the four test scenes across the three test devices.
Durations are shown for SRP with order-7 and order-2 spherical harmonics as
well as for direct-only lighting. Direct-only lighting is included to show how
much extra frame time is used by SRP.

59

6.4. ERROR VS SPHERICAL HARMONIC ORDER

6.4 Error vs Spherical Harmonic Order

The second experiment was to see whether using higher order spherical har-
monics is worth the extra computation cost on low-end devices. I compared
an order-7 indirect only render of a test scene (Figure 6.7 top left) to the same
scene rendered with lower order spherical harmonics (Figure 6.7 top right). The
comparison was done using the mean squared error (MSE) of the lightness chan-
nel (L) of the renders in the CIE L*a*b colour space [62]. I chose to perform
the comparison in the CIE L*a*b colour space as the space is based on human
perception of light and therefore gives a more intuitive error metric than a mean
squared error in the RGB (red, green, blue) colour space.

To see if the error changed at different rates in different areas of the render, I
also performed this comparison in four regions (Figure 6.7 top left). Regions a)
and b) were placed over areas with higher frequency changes. The edge of the
object by the left wall and the corner of the room. Regions c) and d) were placed
over areas with low frequency changes. The back wall and the floor.

For the entire image, the MSE in lightness decreased as spherical harmonic
order increased (grey line in Figure 6.7 bottom right). For the regions, the
lightness MSE decreased faster for the low frequency regions than for the higher
frequency regions as spherical harmonic order was increased. The low frequency
regions dropped to a MSE below 0.01 by order-1, but it took the high frequency
regions until order-4 to do the same. This is shown in both the bottom left and
bottom right sub-figures within Figure 6.7. The bottom left figure shows the
original render and a greyscale difference image between the order-7 render and
each lower order render of the L channel in the L*a*b colour space.

60

CHAPTER 6. RESULTS

Figure 6.7: Top Left: Indirect-only SRP renders of the test scene using order-0
through to order-6 spherical harmonics. Top Right: Order-7 reference render
which the other renders are compared to. The comparison regions are shown
with coloured squares and labels. Bottom Left: Comparison regions as spherical
harmonic order increases. The top row of each region is the original render.
Bottom row is the difference in MSE from the reference render displayed as a
greyscale render, where 0 is black and 0.01 is white. Bottom Right: Graph of the
MSE in lightness for each region as spherical harmonic order increases. The
graph omits order-0 in order to avoid skewing the Y-axis scale.

61

6.5. SCALABILITY

6.5 Scalability

SRP has scaling parameters which can be adjusted in the precomputation pro-
cess to reduce the amount of computation required at runtime. These include
spherical harmonic order, receiver count, and probe count 1. To see how each of
these parameters affected frame time as they increase, one parameter at a time
was increased in increments and the mean frame time over 1000 frames was
recorded for each increment on the Blue-Orange Box test scene.

6.5.1 Spherical Harmonic Order

Spherical harmonic order was increased from order-0 up to order-7. The probe
count was fixed at 20 and receiver count at 50 784.

Interestingly, the increase in frame time was higher for the dedicated graphics
cards. The difference between order-7 and order-2 spherical harmonics was
1.7 ms for the Radeon 560 and 2.3 ms for the Vega 56. Whereas on the iPhone 7 it
was 1.1 ms.

6.5.2 Probe Count

Probe count was increased from 20 to 200. Spherical harmonic order was fixed at
2 and receiver count at 50 784.

The number of probes in a scene had a significantly larger impact on the
iPhone 7. The difference in frame time between 200 probes and 20 probes for the
iPhone 7 was 49.3 ms, 6.7 ms for the Radeon 560, and 2.25 ms for the Vega 56. For
a receiver count of 50 784 with order-2 probes, around 100 probes was the limit
for staying under the real-time cut-off of 33.3 ms for the iPhone 7.

6.5.3 Receiver Count

Receiver count was increased in increments from 50 784 - 1 000 000 receivers.
Spherical harmonic order was fixed at 2 and probe count at 20.

1The number of PCA vectors for CPCA also has an effect but is not included in these results
due to a lack of time. It is fixed at 32 PCA vectors for all scenes.

62

CHAPTER 6. RESULTS

As with the probe count, increasing the receiver count had a significantly
larger impact on the iPhone 7. The frame time difference between 1 000 000 and
50 784 receivers was 150.1 ms on the iPhone 7, 11.7 ms on the Radeon 560, and
1.9 ms on the Vega 56.

50 100 150 200
Probe Count

10

20

30

40

50

60

M
ea

n
Fr

am
e

T
im

e
(m

s)

60FPS

30FPS

250000 500000 750000
Receiver Count

0

50

100

150

M
ea

n
Fr

am
e

T
im

e
(m

s)

60FPS
30FPS

0 1 2 3 4 5 6 7
Spherical Harmonic Order

4

6

8

10

12

14

16

M
ea

n
Fr

am
e

T
im

e
(m

s)

60FPS

iPhone 7
Radeon 560
Vega 56

Figure 6.8: Graphs showing how the increase in spherical harmonic order, probe
count, and receiver count affect frame time across the three test devices.

63

6.6. REDUCING RECEIVER COUNTS TO IMPROVE PERFORMANCE

6.6 Reducing Receiver Counts to Improve Performance

The results from the previous section show that performance improves if any of
the spherical harmonic order, probe count, or receiver count are reduced. To see
if Crytek Sponza could run in real time on the iPhone 7 while still producing
acceptable results, the receiver count was decreased in increments from 437 557 to
56 581 receivers. All of the renders in this section were performed on the iPhone 7
using order-2 spherical harmonics and 169 probes.

Crytek Sponza ran in real time at 31.5 FPS (31.7 ms per frame) when the re-
ceiver count was reduced to 120 479, but there are some quality differences when
compared to the render with 437 557 receivers (Figure 6.9). Notably, the indirect
lighting is slightly darker, the indirect shadows have less definition, and the
indirect colour bleeding from the cloth curtains extends over a slightly larger area.

The quality differences are clearer when only indirect lighting is shown with-
out surface albedo. Figure 6.10 show four renders of Crytek Sponza with only
indirect lighting and without surface albedo. The renders progressively decrease
in receiver count. At 56 581 receivers (Figure 6.10d), my SRP implementation
ran even faster at 36.1 FPS (27.7 ms per frame), but the render is considerably
darker, the indirect shadows are not visible, and the colour bleeding extends
much further.

To a lesser extent, the same quality differences appear when reducing the
receiver count of a path-traced lightmap reference render. Figure 6.11 shows a
path-traced lightmap reference render of Crytek Sponza with 437 557 (6.11a) and
56 581 receivers (6.11b). The renders show only indirect lighting without surface
albedo, and no linear filter is applied to clearly show the size of the receivers. At
56 581 receivers, the path-traced lightmap render also becomes darker, indirect
shadows are no longer visible, and the indirect colour bleeding extends out
slightly more. However, these quality differences are much more pronounced
in same render using SRP (Figure 6.12b). Additionally, the path-traced lightmap
reference render with 437 557 receivers has much more detail than SRP with
437 557 receivers. For example, the yellow seal on the curtains is visible in the
path-traced reference (Figure 6.11a), but not in the SRP version (Figure 6.12a).

64

CHAPTER 6. RESULTS

(a) 437 557 receivers — 16.4 FPS (61.1 ms)

(b) 199 406 receivers — 31.5 FPS (31.7 ms)

Figure 6.9: Decreasing receiver count on Crytek Sponza from 437 557 to 120 479

receivers allowed it to run in real-time on the iPhone 7. There is a drop in quality
though. The indirect lighting for SRP is darker, colour bleeds out more from the
cloth curtains, and indirect shadows are less defined.

65

6.6. REDUCING RECEIVER COUNTS TO IMPROVE PERFORMANCE

(a
)4

37
55

7
re

ce
iv

er
s

—
16
.4

F
P

S
(6

1.
1

m
s)

(b
)1

99
40

6
re

ce
iv

er
s

—
24
.4

F
P

S
(4

0.
9

m
s)

(c
)1

20
47

9
re

ce
iv

er
s

—
31
.5

F
P

S
(3

1.
7

m
s)

(d
)5

6
58

1
re

ce
iv

er
s

—
36
.1

F
P

S
(2

7.
7

m
s)

Fi
gu

re
6.

10
:

D
ec

re
as

in
g

re
ce

iv
er

co
u

nt
on

C
ry

te
k

Sp
on

za
.

R
en

d
er

s
on

ly
sh

ow
co

nt
ri

bu
ti

on
of

in
d

ir
ec

t
lig

ht
w

it
ho

ut
su

rf
ac

e
al

be
do

.P
er

fo
rm

an
ce

m
et

ri
cs

an
d

re
nd

er
s

ar
e

fr
om

th
e

iP
ho

ne
7.

66

CHAPTER 6. RESULTS

(a
)4

37
55

7
re

ce
iv

er
s

(b
)5

6
58

1
re

ce
iv

er
s

Fi
gu

re
6.

11
:R

ed
uc

in
g

re
ce

iv
er

co
un

to
n

C
ry

te
k

Sp
on

za
fo

r
th

e
pa

th
-t

ra
ce

d
lig

ht
m

ap
re

fe
re

nc
e.

(a
)4

37
55

7
re

ce
iv

er
s.

(b
)5

6
58

1
re

ce
iv

er
s.

Fi
gu

re
6.

12
:R

ed
uc

in
g

re
ce

iv
er

co
un

to
n

C
ry

te
k

Sp
on

za
fo

r
SR

P.

67

6.7. ANALYSIS

6.7 Analysis

The performance evaluation results (section 6.3) showed that, at least for the
simple scenes, it is possible for SRP to run in real time on an iPhone 7. The two
simple test scenes ran on all devices at 60 FPS (Figures 6.6a and 6.6b), but for the
two complex test scenes, SRP only ran in real time on the iPhone 7 for Modern Hall
with order-2 spherical harmonics. For Crytek Sponza, SRP still ran interactively
on the iPhone 7 at 16.4 FPS for order-2 spherical harmonics, but it did not run
above the 30 FPS real-time threshold.

The visual evaluation results (section 6.2) show that my SRP implementation
is comparable to a path-traced lightmap reference image. Although there are
differences between them, SRP is considerably faster. For Crytek Sponza, the
path-traced image took 3 minutes and 12 seconds to render compared to 75.5 ms

on the iPhone 7. The main differences between SRP and the path-traced lightmaps
were less defined indirect shadows and colour bleeding (Figure 6.13). This lack of
definition is due to the band-limiting of the probes, the number of probes, and the
probe positions. It is not because of the limited resolution of the receivers as the
path-traced lightmap reference renders use the same receiver points as the SRP
renders yet still have more definition.

The error vs order results (section 6.4) indicate that high-order spherical har-
monics may not be worth the extra computation cost on low-end devices. For
the low-frequency regions, the error is significantly reduced by order-2 spherical
harmonics. This is expected as spherical harmonics can capture Lambertian diffuse
irradiance signals with 1% error [10]. However, higher order spherical harmonics
are still needed to better capture higher frequency information like visibility. For
the Blue-Orange test scene with one directional light, the reduction in lightness
MSE between order-3 and order-7 spherical harmonics was minimal for both the
low-frequency and high-frequency regions, and not worth the 0.82 ms increased
cost on the iPhone 7 between order-2 and order-7 harmonics. However, as the
experiment only tested one scene, the results can only indicate and do not confirm
that high-order spherical harmonics are not worth the extra computation. There
may be some scenes where high-order spherical harmonics have a greater impact.

68

CHAPTER 6. RESULTS

(a) Indirect shadows are visible but much less defined behind the banners in the Crytek

Sponza test scene rendered using SRP (cut-out from Figure 6.5).

(b) Both the indirect shadows and colour bleeding from the left wall onto the box are less

defined in the Cornell Box test scene rendered using SRP (cut-out from Figure 6.4).

Figure 6.13: Cut-outs showing examples of the less defined indirect shadows and
colour bleeding in SRP.

69

6.7. ANALYSIS

The scalability results (section 6.5) show that the receiver count has a large
impact on performance for the iPhone 7. Reducing the receiver count from
437 557 to 120 479 receivers for Crytek Sponza brought the per frame time down
to 31.7 ms (section 6.6) – just under the real-time cut-off of 33.33 ms. The render
with 120 479 receivers was still comparable to the render with 437 557 receivers,
although there were slight reductions in quality: the render was slightly darker,
indirect shadows were a little less defined, and the coloured indirect lighting from
the curtains bled across the ground more. Once the receiver count was reduced
to 56 581, however, the render was no longer comparable. It was significantly
darker, indirect shadows were barely visible, and much more colour bleeding
was apparent.

The darkening of the renders is mostly due to the receiver resolution. If half
a receiver is lit by a light, then the whole receiver will be half the intensity of the
lit half as each receiver stores the average irradiance of the patch it covers. This
makes the half lit by the light appear too dark and the half in shadow appear too
bright. With fewer receivers in a scene, the area each receiver covers is larger and
so it is more likely that a receiver will cover an area which differs in intensity.
A slightly darker image was expected when rendering Crytek Sponza with
fewer receivers because some receivers were positioned underneath the curtains.
These receivers were both in light and shadow at the same time. Figure 6.11b
shows a path-traced lightmap reference render of Crytek Sponza with 56 581

receivers; as expected, the receivers underneath the curtains are considerably
darker. However, the same render with SRP in Figure 6.12b is even darker still
and there is considerably more colour bleeding over the receivers in the middle
of the courtyard. These differences are likely due to the band-limited probes
and their placement, but without further investigation, it is hard to tell if the
differences are inherent to SRP or due to an implementation error.

Either way, the results show that receiver count is a point of scalability which
can be reduced to improve performance at the cost of quality, and the renders are
still visually comparable as long as the receiver count is not reduced too much.
In this case, reducing the receiver count allowed Crytek Sponza to run in real
time on the low-end iPhone 7.

70

Chapter 7

Conclusion

The research in this thesis presents a scalable real-time global illumination algo-
rithm using SRP, and to the best of my knowledge, this thesis is the first to show
that SRP runs in real time on mobile devices. The results showed that for simple
scenes, my implementation ran above 60 FPS on an iPhone 7, and for complex
test scenes, it ran above 30 FPS. The probe count, receiver count, and number of
basis functions used are all points of scalability which can be adjusted to improve
performance at the cost of quality. While a reduction in quality was necessary
for the complex scenes to run in real time on the iPhone 7, the reduced-quality
renders were still comparable to the high-quality ones.

However, while my SRP implementation runs in real time and scales from a
low-end iPhone 7 to a high-end Vega 56, it is not yet fast enough for applications
where graphics techniques need to run alongside other computation on the GPU.
Graphics techniques in video games need to run well below the real-time cut-off
of 33.33 ms. C. Barré-BriseBois, a rendering engineer at EA Games, stated that
techniques in their games must typically run under a cut-off of 3.0 ms if a game
needs to run at 30 FPS, or under 1.5 ms if a game needs to run at 60 FPS [63].
Even on the simple test scenes, my SRP implementation does not meet these
requirements as it took at least 5 ms of GPU time.

I believe that this is a limitation of my implementation rather than SRP
itself. Comparing the performance results from Silvennoinen and Lehtinen’s
implementation to mine, their most complex test scene Brutalist Hall took only

71

4.87 ms of GPU time on a Nvidia Titan X, while the most complex test scene in
this thesis took 14.26 ms on the AMD Vega 56 graphics card. This is a significant
difference, especially given the specifications of the Vega 56 are generally better
than the Titan X. On top of this, Brutalist Hall is more complex than Crytek
Sponza. The triangle count for Brutalist Hall is not published, but it uses 115

more probes and has 129 813 more receivers. With more time, effort, and expertise
spent on optimisation, I believe the performance cost of my SRP implementation
could be considerably reduced even for low-end devices like the iPhone 7.

There are two main areas where future work could improve the performance
of my implementation. Firstly, the compute shaders my implementation uses
to perform the matrix multiplications needed to reconstruct irradiance at the
receivers use a naı̈ve approach (section 5.3). Each compute thread for both
multiplications only multiplies a single row of the matrix; there is an overhead
associated with spawning threads, so reducing the number of threads by in-
creasing the number of rows each thread multiplies may improve performance.
Additionally, as the cluster SVD projection multiplication is sparse, it would be
worth investigating efficient algorithms available for performing sparse matrix
multiplication on the GPU [64, 65]. Secondly, my implementation projects radi-
ance at all probes in a scene into spherical harmonics every frame. It would be
interesting to see if staggering probe updates across frames could reduce costs
without a perceivable drop in quality; for example by updating half of the probes
one frame, then the other half on the next, or by updating probes closer to the
camera more often.

There are a few other areas which would be worth exploring in future work.
My SRP implementation was limited to irradiance transport. Silvennoinen and
Lehtinen support radiance transport in their implementation which allows for
normal mapping and glossy BRDFs for the final bounce towards the camera.
They had to reduce spherical harmonics to order-4 to maintain performance. It
would be interesting to see if low-end devices like the iPhone 7 could handle
radiance transfer in real time. Next, my thesis did not explore any automatic
probe placement methods. Probes were placed manually for all results. This
is not ideal as probe placement affects the quality of renders. Exploration of
automatic probe placement methods to help with the scalability of SRP would

72

CHAPTER 7. CONCLUSION

also be worthwhile for future work. Fewer probes placed in better positions
could provide higher quality results at a lower performance cost.

Real-time global illumination that scales from low to high-end devices means
applications that require realistic lighting can reach wider audiences by running
on more devices. This thesis shows that SRP scales from a high-end AMD RX
Vega 56 graphics card down to an iPhone 7 while still being visually comparable
to a path-traced lightmap reference. Additionally, an optimised implementation
would run even faster making it viable for applications that need to run other
computation alongside SRP.

73

74

Appendices

75

Appendix A

LlamaEngine

Figure A.1: Lou, the protagonist of Interdimensional Llama, within Lla-
maEngine.

LlamaEngine, named because of its planned use in the video game Inter-
dimensional Llama (Figure A.1), is a 3D rasteriser and rendering framework
developed by Thomas Roughton and myself. We began development on Lla-
maEngine in late 2016 and have continually developed and improved on it since

76

APPENDIX A. LLAMAENGINE

then. It primarily uses the Swift programming language [66] on the CPU and
the Metal Shading Language [16] on the GPU.

LlamaEngine supports both forward+ and deferred rendering using clustered
shading [67], uses a rendering graph approach [68] for setting up rendering
work, and uses industry-standard material models: either diffuse Lambertian, or
Disney diffuse and GGX specular with Smith height-correlated visibility [69].

It also has a GPU-based path-tracer and progressive lightmapper developed
by Thomas Roughton for their Master’s thesis [53], which I use in this thesis
as a ground-truth reference to compare the quality of my SRP implementation
against.

77

Bibliography

[1] M. Mittring, “Finding Next Gen: CryEngine 2,” in ACM SIGGRAPH
2007 Courses, ser. SIGGRAPH ’07. New York, NY, USA: ACM, 2007,
pp. 97–121, event-place: San Diego, California. [Online]. Available:
http://doi.acm.org/10.1145/1281500.1281671

[2] T. Ritschel, T. Grosch, and H.-P. Seidel, “Approximating Dynamic Global
Illumination in Image Space,” in Proceedings of the 2009 Symposium on
Interactive 3D Graphics and Games, ser. I3D ’09. New York, NY, USA: ACM,
2009, pp. 75–82, event-place: Boston, Massachusetts. [Online]. Available:
http://doi.acm.org/10.1145/1507149.1507161

[3] Crassin Cyril, Neyret Fabrice, Sainz Miguel, Green Simon, and Eisemann
Elmar, “Interactive Indirect Illumination Using Voxel Cone Tracing,”
Computer Graphics Forum, vol. 30, no. 7, pp. 1921–1930, Nov. 2011. [Online].
Available: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.
02063.x

[4] C. Wahlén, “Global Illumination in Real-Time using Voxel Cone
Tracing on Mobile Devices,” Master’s thesis, Linköping University,
2016. [Online]. Available: https://liu.diva-portal.org/smash/get/diva2:
1148572/FULLTEXT01.pdf

[5] Abrash, Michael, Michael Abrash’s Graphics Programming Black Book (Special
Edition). Coriolis Group, Jul. 1997.

[6] A. Silvennoinen and J. Lehtinen, “Real-time Global Illumination by
Precomputed Local Reconstruction from Sparse Radiance Probes,” ACM

78

http://doi.acm.org/10.1145/1281500.1281671
http://doi.acm.org/10.1145/1507149.1507161
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.02063.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.02063.x
https://liu.diva-portal.org/smash/get/diva2:1148572/FULLTEXT01.pdf
https://liu.diva-portal.org/smash/get/diva2:1148572/FULLTEXT01.pdf

BIBLIOGRAPHY

Trans. Graph., vol. 36, no. 6, pp. 230:1–230:13, Nov. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3130800.3130852

[7] P. Johnston, “Cornell Box With and Without Radiosity Enabled.gif.”
[Online]. Available: https://commons.wikimedia.org/wiki/File:Cornell
Box With and Without Radiosity Enabled.gif

[8] J. T. Kajiya, “The Rendering Equation,” in Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH
’86. New York, NY, USA: ACM, 1986, pp. 143–150. [Online]. Available:
http://doi.acm.org/10.1145/15922.15902

[9] M. Iwanicki and P.-P. Sloan, Ambient Dice. The Eurographics Association,
2017. [Online]. Available: https://diglib.eg.org:443/xmlui/handle/10.
2312/sre20171191

[10] R. Ramamoorthi and P. Hanrahan, “An Efficient Representation for
Irradiance Environment Maps,” in Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’01.
New York, NY, USA: ACM, 2001, pp. 497–500. [Online]. Available:
http://doi.acm.org/10.1145/383259.383317

[11] R. Green, “Spherical Harmonic Lighting: The Gritty Details,” p. 69, Jan.
2003.

[12] R. Ng, R. Ramamoorthi, and P. Hanrahan, “All-frequency Shadows Using
Non-linear Wavelet Lighting Approximation,” in ACM SIGGRAPH 2003
Papers, ser. SIGGRAPH ’03. New York, NY, USA: ACM, 2003, pp. 376–381.
[Online]. Available: http://doi.acm.org/10.1145/1201775.882280

[13] Y.-T. Tsai and Z.-C. Shih, “All-Frequency Precomputed Radiance Transfer us-
ing Spherical Radial Basis Functions and Clustered Tensor Approximation,”
p. 10.

[14] Iñigo Quilez, “Spherical Harmonics.” [Online]. Available: https:
//commons.wikimedia.org/wiki/File:Spherical Harmonics.png

79

http://doi.acm.org/10.1145/3130800.3130852
https://commons.wikimedia.org/wiki/File:Cornell_Box_With_and_Without_Radiosity_Enabled.gif
https://commons.wikimedia.org/wiki/File:Cornell_Box_With_and_Without_Radiosity_Enabled.gif
http://doi.acm.org/10.1145/15922.15902
https://diglib.eg.org:443/xmlui/handle/10.2312/sre20171191
https://diglib.eg.org:443/xmlui/handle/10.2312/sre20171191
http://doi.acm.org/10.1145/383259.383317
http://doi.acm.org/10.1145/1201775.882280
https://commons.wikimedia.org/wiki/File:Spherical_Harmonics.png
https://commons.wikimedia.org/wiki/File:Spherical_Harmonics.png

BIBLIOGRAPHY

[15] M. Pharr and G. Humphreys, Physically Based Rendering - 3rd Edition. From
Theory to Implementation, 3rd ed. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2017.

[16] Apple Inc, “Metal Shading Language Specification Version 2.1,” p.
179, 2019. [Online]. Available: https://developer.apple.com/metal/
Metal-Shading-Language-Specification.pdf

[17] P.-P. Sloan, J. Hall, J. Hart, and J. Snyder, “Clustered Principal Components
for Precomputed Radiance Transfer,” in ACM SIGGRAPH 2003 Papers, ser.
SIGGRAPH ’03. New York, NY, USA: ACM, 2003, pp. 382–391. [Online].
Available: http://doi.acm.org/10.1145/1201775.882281

[18] T. Ritschel, C. Dachsbacher, T. Grosch, and J. Kautz, “The State of
the Art in Interactive Global Illumination,” Computer Graphics Forum,
vol. 31, no. 1, pp. 160–188, Feb. 2012. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.02093.x

[19] A. Keller, L. Fascione, M. Fajardo, I. Georgiev, P. Christensen, J. Hanika,
C. Eisenacher, and G. Nichols, “The path tracing revolution in the
movie industry,” in ACM SIGGRAPH 2015 Courses on - SIGGRAPH ’15.
Los Angeles, California: ACM Press, 2015, pp. 1–7. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2776880.2792699

[20] L. Fascione, J. Hanika, M. Leone, M. Droske, J. Schwarzhaupt,
T. Davidovič, A. Weidlich, and J. Meng, “Manuka: A Batch-Shading
Architecture for Spectral Path Tracing in Movie Production,” ACM Trans.
Graph., vol. 37, no. 3, pp. 31:1–31:18, Aug. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3182161

[21] P. Christensen, A. Kensler, and C. Kilpatrick, “Progressive Multi-Jittered
Sample Sequences: Supplemental Materials,” p. 7, 2018.

[22] B. Burley, D. Adler, M. J.-Y. Chiang, H. Driskill, R. Habel, P. Kelly, P. Kutz,
Y. K. Li, and D. Teece, “The Design and Evolution of Disney’s Hyperion
Renderer,” ACM Transactions on Graphics (TOG), vol. 37, no. 3, p. 33,

80

https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
http://doi.acm.org/10.1145/1201775.882281
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.02093.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2012.02093.x
http://dl.acm.org/citation.cfm?doid=2776880.2792699
http://doi.acm.org/10.1145/3182161

BIBLIOGRAPHY

Aug. 2018. [Online]. Available: http://dl.acm.org/citation.cfm?id=3243123.
3182159

[23] H. W. Jensen, “Global Illumination using Photon Maps,” in Rendering
Techniques ’96, W. Hansmann, W. T. Hewitt, W. Purgathofer, X. Pueyo,
and P. Schröder, Eds. Vienna: Springer Vienna, 1996, pp. 21–
30. [Online]. Available: http://www.springerlink.com/index/10.1007/
978-3-7091-7484-5 3

[24] E. Veach and L. J. Guibas, “Metropolis light transport,” in Proceedings of
the 24th annual conference on Computer graphics and interactive techniques
- SIGGRAPH ’97. Not Known: ACM Press, 1997, pp. 65–76. [Online].
Available: http://portal.acm.org/citation.cfm?doid=258734.258775

[25] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker, and
P. Shirley, “State of the Art in Ray Tracing Animated Scenes,” Computer
Graphics Forum, vol. 28, no. 6, pp. 1691–1722, Sep. 2009. [Online]. Available:
http://doi.wiley.com/10.1111/j.1467-8659.2008.01313.x

[26] G. Estes, “World’s Top Graphics Software Companies Are Already Adopting
NVIDIA RTX Capabilities. Here’s Why.” Aug. 2018. [Online]. Available:
https://blogs.nvidia.com/blog/2018/08/13/turing-industry-support/

[27] A. Burnes, “Battlefield V DXR Real-Time Ray Tracing Available Now,” Nov.
2018. [Online]. Available: https://www.nvidia.com/en-us/geforce/news/
battlefield-v-rtx-ray-tracing-out-now/

[28] S. Kim, T. Harada, and Y. J. Kim, “Energy-efficient global illumination
algorithms for mobile devices using dynamic voltage and frequency scaling,”
Computers & Graphics, vol. 70, pp. 198–205, Feb. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0097849317301103

[29] W. Lee, Y. Shin, J. Lee, J. Kim, J. Nah, H. Park, S. Jung, and S. Lee, “A novel
mobile GPU architecture based on ray tracing,” in 2013 IEEE International
Conference on Consumer Electronics (ICCE), Jan. 2013, pp. 21–22.

81

http://dl.acm.org/citation.cfm?id=3243123.3182159
http://dl.acm.org/citation.cfm?id=3243123.3182159
http://www.springerlink.com/index/10.1007/978-3-7091-7484-5_3
http://www.springerlink.com/index/10.1007/978-3-7091-7484-5_3
http://portal.acm.org/citation.cfm?doid=258734.258775
http://doi.wiley.com/10.1111/j.1467-8659.2008.01313.x
https://blogs.nvidia.com/blog/2018/08/13/turing-industry-support/
https://www.nvidia.com/en-us/geforce/news/battlefield-v-rtx-ray-tracing-out-now/
https://www.nvidia.com/en-us/geforce/news/battlefield-v-rtx-ray-tracing-out-now/
https://linkinghub.elsevier.com/retrieve/pii/S0097849317301103

BIBLIOGRAPHY

[30] O. Good and Z. Taylor, “Optimized photon tracing using spherical
harmonic light maps,” in ACM SIGGRAPH 2005 Sketches on - SIGGRAPH
’05. Los Angeles, California: ACM Press, 2005, p. 53. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1187112.1187175

[31] H. Chen and X. Liu, “Lighting and Material of Halo 3,” in ACM
SIGGRAPH 2008 Games, ser. SIGGRAPH ’08. New York, NY, USA: ACM,
2008, pp. 1–22, event-place: Los Angeles, California. [Online]. Available:
http://doi.acm.org/10.1145/1404435.1404437

[32] Jonathan Blow, “Graphics Tech: Precomputed Lighting,” Mar.
2010. [Online]. Available: http://the-witness.net/news/2010/03/
graphics-tech-precomputed-lighting/

[33] Ignacio Castaño, “Lightmap Parameterization,” Mar. 2010.
[Online]. Available: http://the-witness.net/news/2010/03/
graphics-tech-texture-parameterization/

[34] A. Keller, “Instant radiosity,” in Proceedings of the 24th annual
conference on Computer graphics and interactive techniques - SIGGRAPH
’97. Not Known: ACM Press, 1997, pp. 49–56. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=258734.258769

[35] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. P. Green-
berg, “Lightcuts: A Scalable Approach to Illumination,” p. 10, 2005.

[36] B. Walter, P. Khungurn, and K. Bala, “Bidirectional Lightcuts,” ACM
Trans. Graph., vol. 31, no. 4, pp. 59:1–59:11, Jul. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2185520.2185555

[37] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz,
“Imperfect Shadow Maps for Efficient Computation of Indirect Illumination,”
in ACM SIGGRAPH Asia 2008 Papers, ser. SIGGRAPH Asia ’08. New York,
NY, USA: ACM, 2008, pp. 129:1–129:8, event-place: Singapore. [Online].
Available: http://doi.acm.org/10.1145/1457515.1409082

82

http://portal.acm.org/citation.cfm?doid=1187112.1187175
http://doi.acm.org/10.1145/1404435.1404437
http://the-witness.net/news/2010/03/graphics-tech-precomputed-lighting/
http://the-witness.net/news/2010/03/graphics-tech-precomputed-lighting/
http://the-witness.net/news/2010/03/graphics-tech-texture-parameterization/
http://the-witness.net/news/2010/03/graphics-tech-texture-parameterization/
http://portal.acm.org/citation.cfm?doid=258734.258769
http://doi.acm.org/10.1145/2185520.2185555
http://doi.acm.org/10.1145/1457515.1409082

BIBLIOGRAPHY

[38] T. Ritschel, E. Eisemann, I. Ha, J. D. K. Kim, and H.-P. Seidel,
“Making Imperfect Shadow Maps View-Adaptive: High-Quality Global
Illumination in Large Dynamic Scenes,” Computer Graphics Forum,
vol. 30, no. 8, pp. 2258–2269, Dec. 2011. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/full/10.1111/j.1467-8659.2011.01998.x

[39] C. Dachsbacher, J. Křivánek, M. Hašan, A. Arbree, B. Walter, and
J. Novák, “Scalable Realistic Rendering with Many-Light Methods:
Scalable Realistic Rendering with Many-Light Methods,” Computer
Graphics Forum, vol. 33, no. 1, pp. 88–104, Feb. 2014. [Online]. Available:
http://doi.wiley.com/10.1111/cgf.12256

[40] J. McLaren, “The Technology of the Tomor-
row Children,” GDC 2015, 2015. [Online]. Avail-
able: https://web.archive.org/web/20150315020546/http://fumufumu.
q-games.com/archives/TheTechnologyOfTomorrowsChildrenFinal.pdf

[41] A. Yudintsev, “Scalable Real-Time Global Illumination for Large Scenes,”
Mar. 2019. [Online]. Available: https://www.gdcvault.com/play/1026469/
Scalable-Real-Time-Global-Illumination

[42] M. McGuire, M. Mara, D. Nowrouzezahrai, and D. Luebke, “Real-time
Global Illumination Using Precomputed Light Field Probes,” in Proceedings
of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ser. I3D ’17. New York, NY, USA: ACM, 2017, pp. 2:1–2:11. [Online].
Available: http://doi.acm.org/10.1145/3023368.3023378

[43] S. Martin, “A Real Time Radiosity Architecture for Video Games.
Advances in Real-Time Rendering Course.” SIGGRAPH 2010,
2010. [Online]. Available: http://advances.realtimerendering.com/
s2010/Martin-Einarsson-RadiosityArchitecture(SIGGRAPH%202010%
20Advanced%20RealTime%20Rendering%20Course).pdf

[44] W. Joseph, “Global Illumination That Scales,” 2018.

[45] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed Radiance Transfer for Real-
time Rendering in Dynamic, Low-frequency Lighting Environments,” in

83

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467-8659.2011.01998.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467-8659.2011.01998.x
http://doi.wiley.com/10.1111/cgf.12256
https://web.archive.org/web/20150315020546/http://fumufumu.q-games.com/archives/TheTechnologyOfTomorrowsChildrenFinal.pdf
https://web.archive.org/web/20150315020546/http://fumufumu.q-games.com/archives/TheTechnologyOfTomorrowsChildrenFinal.pdf
https://www.gdcvault.com/play/1026469/Scalable-Real-Time-Global-Illumination
https://www.gdcvault.com/play/1026469/Scalable-Real-Time-Global-Illumination
http://doi.acm.org/10.1145/3023368.3023378
http://advances.realtimerendering.com/s2010/Martin-Einarsson-RadiosityArchitecture(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20Course).pdf
http://advances.realtimerendering.com/s2010/Martin-Einarsson-RadiosityArchitecture(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20Course).pdf
http://advances.realtimerendering.com/s2010/Martin-Einarsson-RadiosityArchitecture(SIGGRAPH%202010%20Advanced%20RealTime%20Rendering%20Course).pdf

BIBLIOGRAPHY

Proceedings of the 29th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’02. New York, NY, USA: ACM, 2002, pp.
527–536. [Online]. Available: http://doi.acm.org/10.1145/566570.566612

[46] J. Kautz, P.-P. Sloan, and J. Snyder, “Fast, Arbitrary BRDF Shading for
Low-frequency Lighting Using Spherical Harmonics,” in Proceedings of the
13th Eurographics Workshop on Rendering, ser. EGRW ’02. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2002, pp. 291–296.
[Online]. Available: http://dl.acm.org/citation.cfm?id=581896.581934

[47] M. Hasan, F. Pellacini, and K. Bala, “Direct-to-Indirect Transfer for Cine-
matic Relighting,” p. 9, 2006.

[48] G. J. Ward, F. M. Rubinstein, and R. D. Clear, “A Ray Tracing
Solution for Diffuse Interreflection,” in Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH
’88. New York, NY, USA: ACM, 1988, pp. 85–92. [Online]. Available:
http://doi.acm.org/10.1145/54852.378490

[49] J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching
for efficient global illumination computation,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 11, no. 5, pp. 550–561, Sep. 2005.

[50] J. Lehtinen, M. Zwicker, E. Turquin, and J. Kontkanen, “A Meshless Hierar-
chical Representation for Light Transport,” p. 9, 2008.

[51] AMD, “Baikal - Real-time path-tracer.” [Online]. Available: https:
//github.com/GPUOpen-LibrariesAndSDKs/RadeonProRender-Baikal

[52] B. Welford, “Note on a Method for Calculating Corrected Sums of
Squares and Products: Technometrics: Vol 4, No 3,” Aug. 1965. [Online].
Available: https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.
10490022

[53] T. Rougthon, “Interactive Generation of Path-Traced Lightmaps (Pending
Examination),” Master’s thesis, Victoria University of Wellington, 2019.

84

http://doi.acm.org/10.1145/566570.566612
http://dl.acm.org/citation.cfm?id=581896.581934
http://doi.acm.org/10.1145/54852.378490
https://github.com/GPUOpen-LibrariesAndSDKs/RadeonProRender-Baikal
https://github.com/GPUOpen-LibrariesAndSDKs/RadeonProRender-Baikal
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022

BIBLIOGRAPHY

[54] AMD, “Radeon Rays.” [Online]. Available: https://gpuopen.com/
gaming-product/radeon-rays/

[55] Apple, “Metal Performance Shaders.” [Online]. Available: https:
//developer.apple.com/documentation/metalperformanceshaders

[56] University of Tennessee, University of California, Berkely, University
Of Colorado Denver, and NAG Ltd., “LAPACK.” [Online]. Available:
http://performance.netlib.org/lapack/

[57] Y. Linde, A. Buzo, and R. Gray, “An Algorithm for Vector Quantizer Design,”
IEEE Transactions on Communications, vol. 28, no. 1, pp. 84–95, Jan. 1980.

[58] GSMArena, “Counterclockwise: console-quality graphics on phones,” Nov.
2017. [Online]. Available: https://www.gsmarena.com/counterclockwise
consolequality graphics on phones-news-28080.php

[59] C. University, Cornell Box. [Online]. Available: http://www.graphics.
cornell.edu/online/box/data.html

[60] B. Bitterli, Rendering resources., 2016. [Online]. Available: https:
//benedikt-bitterli.me/resources/

[61] M. McGuire, Computer Graphics Archive, Jul. 2017. [Online]. Available:
https://casual-effects.com/data

[62] International Commision on Illumination, “COLORIMETRY — PART 4:
CIE 1976 L*A*B* COLOUR SPACE,” 1976. [Online]. Available: http://www.
cie.co.at/publications/colorimetry-part-4-cie-1976-lab-colour-space

[63] C. Barré-Brisebois, “A Certain Slant of Light: Past, Present and
Future Challenges of Global Illumination in Games,” SIGGRAPH 2017,
Aug. 2017. [Online]. Available: https://www.slideshare.net/colinbb/
past-present-and-future-challenges-of-global-illumination-in-games

[64] M. Deveci, C. Trott, and S. Rajamanickam, “Multithreaded sparse
matrix-matrix multiplication for many-core and GPU architectures,”

85

https://gpuopen.com/gaming-product/radeon-rays/
https://gpuopen.com/gaming-product/radeon-rays/
https://developer.apple.com/documentation/metalperformanceshaders
https://developer.apple.com/documentation/metalperformanceshaders
http://performance.netlib.org/lapack/
https://www.gsmarena.com/counterclockwise_consolequality_graphics_on_phones-news-28080.php
https://www.gsmarena.com/counterclockwise_consolequality_graphics_on_phones-news-28080.php
http://www.graphics.cornell.edu/online/box/data.html
http://www.graphics.cornell.edu/online/box/data.html
https://benedikt-bitterli.me/resources/
https://benedikt-bitterli.me/resources/
https://casual-effects.com/data
http://www.cie.co.at/publications/colorimetry-part-4-cie-1976-lab-colour-space
http://www.cie.co.at/publications/colorimetry-part-4-cie-1976-lab-colour-space
https://www.slideshare.net/colinbb/past-present-and-future-challenges-of-global-illumination-in-games
https://www.slideshare.net/colinbb/past-present-and-future-challenges-of-global-illumination-in-games

BIBLIOGRAPHY

Parallel Computing, vol. 78, pp. 33–46, Oct. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167819118301923

[65] J. Demouth, “Sparse Matrix-Matrix Multiplication on the
GPU,” GPU Technology Conference, 2012. [Online]. Avail-
able: https://on-demand.gputechconf.com/gtc/2012/presentations/
S0285-Optimization-of-Sparse-Matrix-Matrix-Multiplication-on-GPU.pdf

[66] Apple, “Swift.” [Online]. Available: https://swift.org

[67] O. Olsson, M. Billeter, and U. Assarsson, “Clustered Deferred and Forward
Shading,” p. 10, 2012.

[68] E. Arts, “FrameGraph: Extensible Rendering Architecture in Frostbite -
Frostbite,” Mar. 2017. [Online]. Available: https://www.ea.com/frostbite/
news/framegraph-extensible-rendering-architecture-in-frostbite

[69] E. Heitz, “Understanding the Masking-Shadowing Function in Microfacet-
Based BRDFs,” vol. 3, no. 2, p. 60, 2014.

86

https://linkinghub.elsevier.com/retrieve/pii/S0167819118301923
https://on-demand.gputechconf.com/gtc/2012/presentations/S0285-Optimization-of-Sparse-Matrix-Matrix-Multiplication-on-GPU.pdf
https://on-demand.gputechconf.com/gtc/2012/presentations/S0285-Optimization-of-Sparse-Matrix-Matrix-Multiplication-on-GPU.pdf
https://swift.org
https://www.ea.com/frostbite/news/framegraph-extensible-rendering-architecture-in-frostbite
https://www.ea.com/frostbite/news/framegraph-extensible-rendering-architecture-in-frostbite

	Introduction
	Background
	Global Illumination
	Physically Based Rendering Units
	The Rendering Equation
	Spherical Harmonics
	Monte Carlo Integration
	Compute Shaders
	Principal Component Analysis and Singular Value Decomposition

	Related Work
	Sparse Radiance Probes: Theory
	Sparse Interpolation
	Parallax Error Correction
	Mutual Visibility
	Interpolation Operator

	Band-Limited Probes
	Precomputed Local Transport Operator
	Irradiance Transport
	Clustered Principal Component Analysis
	Cluster Compression
	Runtime Reconstruction

	Sparse Radiance Probes: Implementation
	Runtime Overview
	Radiance Coefficient Generation
	Sample Generation

	Cluster SVD Projection and Irradiance Transport
	Forward Render Pass
	Lightmap Dilation
	Transport Coefficient Precomputation
	Overview
	Primary Ray Generation
	Primary Ray Intersection and Mutual Visibility Check
	Mutual Visibility Ray Generation
	Accumulation
	Clustered Principal Component Analysis

	Results
	Test Scenes
	Visual Quality Evaluation
	Performance Evaluation
	Error vs Spherical Harmonic Order
	Scalability
	Spherical Harmonic Order
	Probe Count
	Receiver Count

	Reducing Receiver Counts to Improve Performance
	Analysis

	Conclusion
	Appendices
	LlamaEngine

